1
|
Villa-Reyna AL, Aguilar-Martínez M, Ochoa-Terán A, Santacruz-Ortega H, Leyva-Peralta MA, Vargas-Durazo JT, Salazar-Gastelum MI, García-Elías J, Gálvez-Ruiz JC. Efficient and Sustainable Bidentate Amines-Functionalized Resins for Removing Ag +, Cu 2+, Pb 2+, and Fe 3+ from Water. Polymers (Basel) 2023; 15:2778. [PMID: 37447425 DOI: 10.3390/polym15132778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
We evaluate the effectiveness of chelating resins (CR) derived from Merrifield resin (MR) and 1,2-phenylenediamine (PDA), 2,2'-dipyridylamine (DPA), and 2-(aminomethyl)pyridine (AMP) as adsorbent dosimeters for Ag+, Cu2+, Fe3+, and Pb2+ cations from water under competitive and noncompetitive conditions. MR-PDA, MR-DPA, and MR-AMP were obtained in a 95-97% yield and characterized by IR, fluorescence, and SEM. The ability of CRs as adsorbents was determined by batch and flow procedures. MR-PDA showed a batch adsorption capacity order of Fe3+ (29.8 mg/g) > Ag+ (2.7 mg/g) > Pb2+ (2.6 mg/g) at pH 3.4. The flow adsorption showed affinity towards the Ag+ cation at pH 7 (18.4 mg/g) and a reusability of 10 cycles. In MR-DPA, the batch adsorption capacity order was Ag+ (9.1 mg/g) > Pb2+ (8.2 mg/g) > Cu2+ (3.5 mg/g) at pH 5. The flow adsorption showed affinity to the Cu2+ cation at pH 5 (2.2 mg/g) and a reuse of five cycles. In MR-AMP, the batch adsorption capacity was Ag+ (17.1 mg/g) at pH 3.4. The flow adsorption showed affinity to the Fe3+ cation at pH 2 (4.3 mg/g) and a reuse of three cycles. The three synthesized and reusable CRs have potential as adsorbents for Ag+, Cu2+, Fe3+, and Pb2+ cations and showed versatility in metal removal for water treatment.
Collapse
Affiliation(s)
- Ana-Laura Villa-Reyna
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Avenida Universidad e Irigoyen S/N, Col. E. Ortiz, Caborca 83600, Mexico
| | - Milagros Aguilar-Martínez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Avenida Universidad e Irigoyen S/N, Col. E. Ortiz, Caborca 83600, Mexico
| | - Adrián Ochoa-Terán
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Otay Tecnológico, Tijuana 22510, Mexico
| | - Hisila Santacruz-Ortega
- Departamento de Investigación Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Mario-Alberto Leyva-Peralta
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Avenida Universidad e Irigoyen S/N, Col. E. Ortiz, Caborca 83600, Mexico
| | - Judas-Tadeo Vargas-Durazo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Moisés I Salazar-Gastelum
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Otay Tecnológico, Tijuana 22510, Mexico
| | - José García-Elías
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Otay Tecnológico, Tijuana 22510, Mexico
| | - Juan-Carlos Gálvez-Ruiz
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| |
Collapse
|
2
|
Marin NM, Dolete G, Motelica L, Trusca R, Oprea OC, Ficai A. Preparation of Eco-Friendly Chelating Resins and Their Applications for Water Treatment. Polymers (Basel) 2023; 15:polym15102251. [PMID: 37242827 DOI: 10.3390/polym15102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, two chelating resins were prepared and used for simultaneous adsorption of toxic metal ions, i.e., Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ (MX+). In the first step, chelating resins were prepared starting with styrene-divinylbenzene resin, a strong basic anion exchanger Amberlite IRA 402(Cl-) with two chelating agents, i.e., tartrazine (TAR) and amido black 10B (AB 10B). Key parameters such as contact time, pH, initial concentration, and stability were evaluated for the obtained chelating resins (IRA 402/TAR and IRA 402/AB 10B). The obtained chelating resins show excellent stability in 2M HCl, 2M NaOH, and also in ethanol (EtOH) medium. The stability of the chelating resins decreased when the combined mixture (2M HCl:EtOH = 2:1) was added. The above-mentioned aspect was more evident for IRA 402/TAR compared to IRA 402/AB 10B. Taking into account the higher stability of the IRA 402/TAR and IRA 402/AB 10B resins, in a second step, adsorption studies were carried out on complex acid effluents polluted with MX+. The adsorption of MX+ from an acidic aqueous medium on the chelating resins was evaluated using the ICP-MS method. The following affinity series under competitive analysis for IRA 402/TAR was obtained: Fe3+(44 µg/g) > Ni2+(39.8 µg/g) > Cd2+(34 µg/g) > Cr3+(33.2 µg/g) > Pb2+(32.7 µg/g) > Cu2+ (32.5 µg/g) > Mn2+(31 µg/g) > Co2+(29 µg/g) > Zn2+ (27.5 µg/g). While for IRA 402/AB 10B, the following behavior was observed: Fe3+(58 µg/g) > Ni2+(43.5 µg/g) > Cd2+(43 µg/g) > Cu2+(38 µg/g) > Cr3+(35 µg/g) > Pb2+(34.5 µg/g) > Co2+(32.8 µg/g) > Mn2+(33 µg/g) > Zn2+(32 µg/g), consistent with the decreasing affinity of MX+ for chelate resin. The chelating resins were characterized using TG, FTIR, and SEM analysis. The obtained results showed that the chelating resins prepared have promising potential for wastewater treatment in the context of the circular economy approach.
Collapse
Affiliation(s)
- Nicoleta Mirela Marin
- National Research and Development Institute for Industrial Ecology ECOIND, Street Podu Dambovitei no. 57-73, District 6, 060652 Bucharest, Romania
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Georgiana Dolete
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ludmila Motelica
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Roxana Trusca
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
3
|
New Chelate Resins Prepared with Direct Red 23 for Cd 2+, Ni 2+, Cu 2+ and Pb 2+ Removal. Polymers (Basel) 2022; 14:polym14245523. [PMID: 36559890 PMCID: PMC9786727 DOI: 10.3390/polym14245523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In this paper, two chelate resins prepared by a simple procedure were used for the removal of Cd2+, Ni2+, Cu2+, and Pb2+ (M2+) from aqueous solutions. Amberlite IRA 402 strongly basic anion exchange resin in Cl− form (IRA 402 (Cl−) together with Amberlite XAD7HP acrylic ester co-polymer (XAD7HP) were functionalized with chelating agent Direct red 23 (DR 23). The chelate resins (IRA 402-DR 23 and XAD7HP-DR 23) were obtained in batch mode. The influence of interaction time, pH and the initial concentration of DR 23 solution was investigated using UV-Vis spectrometry. The time necessary to reach equilibrium was 90 min for both resins. A negligible effect of adsorption capacity (Qe) was obtained when the DR 23 solution was adjusted at a pH of 2 and 7.9. The Qe of the XAD7HP resin (27 mg DR 23/g) is greater than for IRA 402 (Cl−) (21 mg DR 23/g). The efficiency of chelating resins was checked via M2+ removal determined by the atomic adsorption spectrometry method (AAS). The M2+ removal by the IRA 402-DR 23 and XAD7HP-DR 23 showed that the latter is more efficient for this propose. As a consequence, for divalent ions, the chelated resins followed the selectivity sequence: Cd2+ > Cu2+ > Ni2+ > Pb2+. Additionally, Cd2+, Cu2+ and Ni2+ removal was fitted very well with the Freundlich model in terms of height correlation coefficient (R2), while Pb2+ was best fitted with Langmuir model for IRA 402-DR 23, the Cu2+ removal is described by the Langmuir model, and Cd2+, Ni2+ and Pb2+ removal was found to be in concordance with the Freundlich model for XAD7HP-DR 23. The M2+ elution from the chelate resins was carried out using 2 M HCl. The greater M2+ recovery from chelating resins mass confirmed their sustainability. The chelate resins used before and after M2+ removal by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were evaluated.
Collapse
|
4
|
Gupta A, Dubey P, Kumar M, Roy A, Sharma D, Khan MM, Bajpai AB, Shukla RP, Pathak N, Hasanuzzaman M. Consequences of Arsenic Contamination on Plants and Mycoremediation-Mediated Arsenic Stress Tolerance for Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233220. [PMID: 36501260 PMCID: PMC9735799 DOI: 10.3390/plants11233220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
Arsenic contamination in water and soil is becoming a severe problem. It is toxic to the environment and human health. It is usually found in small quantities in rock, soil, air, and water which increase due to natural and anthropogenic activities. Arsenic exposure leads to several diseases such as vascular disease, including stroke, ischemic heart disease, and peripheral vascular disease, and also increases the risk of liver, lungs, kidneys, and bladder tumors. Arsenic leads to oxidative stress that causes an imbalance in the redox system. Mycoremediation approaches can potentially reduce the As level near the contaminated sites and are procuring popularity as being eco-friendly and cost-effective. Many fungi have specific metal-binding metallothionein proteins, which are used for immobilizing the As concentration from the soil, thereby removing the accumulated As in crops. Some fungi also have other mechanisms to reduce the As contamination, such as biosynthesis of glutathione, cell surface precipitation, bioaugmentation, biostimulation, biosorption, bioaccumulation, biovolatilization, methylation, and chelation of As. Arsenic-resistant fungi and recombinant yeast have a significant potential for better elimination of As from contaminated areas. This review discusses the relationship between As exposure, oxidative stress, and signaling pathways. We also explain how to overcome the detrimental effects of As contamination through mycoremediation, unraveling the mechanism of As-induced toxicity.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Priya Dubey
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Correspondence: (M.K.); (M.H.)
| | - Aditi Roy
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deeksha Sharma
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Mohammad Mustufa Khan
- Department of Basic Medical Sciences, Integral Institute of Allied Health Sciences & Research (IIAHS&R), Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun 248001, Uttarakhand, India
| | | | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (M.K.); (M.H.)
| |
Collapse
|
5
|
Zr4+ cross-linked chitosan-thiourea composite for efficient detoxification of Cr(VI) ions in aqueous solution. Carbohydr Polym 2022; 296:119872. [DOI: 10.1016/j.carbpol.2022.119872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
|
6
|
Chu S, Feng X, Liu C, Wu H, Liu X. Advances in Chelating Resins for Adsorption of Heavy Metal Ions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shiyu Chu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Xiaofang Feng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Chenchen Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Hanrong Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| |
Collapse
|
7
|
Zandi‐Mehri E, Taghavi L, Moeinpour F, Khosravi I, Ghasemi S. Modification of halloysite nanotubes by hydroxyl terminated triazine‐based dendritic polymer for efficient adsorptive removal of Cd (II) from aqueous media. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elham Zandi‐Mehri
- Department of Environment, Qeshm Branch Islamic Azad University Qeshm Iran
| | - Lobat Taghavi
- Department of Natural Resources and Environment, Science and Research Branch Islamic Azad University Tehran Iran
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch Islamic Azad University Bandar Abbas Iran
| | - Iman Khosravi
- Department of Chemistry, Qeshm Branch Islamic Azad University Qeshm Iran
| | - Saber Ghasemi
- Department of Environment, Bandar Abbas Branch Islamic Azad University Bandar Abbas Iran
| |
Collapse
|
8
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Removal of cadmium ions from aqueous solution by zero valent iron nanoparticles: Equilibrium and thermodynamic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Foroutan R, Peighambardoust SJ, Hosseini SS, Akbari A, Ramavandi B. Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd 2+ removal from shipbuilding wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125428. [PMID: 33618268 DOI: 10.1016/j.jhazmat.2021.125428] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 05/19/2023]
Abstract
Hydroxyapatite (HAp) powder was produced from chicken (femur and beak) and fishbone wastes and used as a green adsorbent to decrease Cd2+ from aqueous media. The HAp powder was generated at 900 °C and characterized using physicochemical techniques. Chicken femur' HAp (16.72 m2/g) had a higher surface compared to chicken beak and fishbone ones. The solution pH was the most important parameter in removing Cd2+. The highest Cd2+ removal was achieved at pH 6, temperature of 25 °C, contact time of 80 min, and adsorbent mass of 2 g/L. The Cd2+ adsorption data fitted well with the quasi-second-order model in kinetics and the Freundlich model in isotherm. The highest adsorption capacity of Cd2+ using HAp-chicken femur, HAp-fish bone, and HAp-chicken beak was determined 22.94 mg/g, 21.54 mg/g, and 21.45 mg/g, respectively. The Cd2+ adsorption using HAp powder was a spontaneous and exothermic process and accidental collisions at the liquid-solid interface were reduced. The decrease of Cd2+ adsorption efficiency was not significant after multiple recovery steps of the desired powders. In addition to Cd2+, other parameters of real wastewater (shipbuilding industry) were reduced by the proposed adsorbents. The utilization of hydroxyapatite powder is expected to be a cheap and eco-friendly method for eliminating metals such as Cd2+.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Seiede Samira Hosseini
- Department of Chemical Engineering, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Akbari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|