1
|
Telfah A, Al Bataineh QM, Al-Essa K, Al-Sawalmih A, Telfah M, Gogiashvili M, Bahti A, Majer G, Hergenröder R. 1H and 13C NMR and FTIR Spectroscopic Analysis of Formic Acid Dissociation Dynamics in Water. J Phys Chem B 2024; 128:11417-11425. [PMID: 39531364 DOI: 10.1021/acs.jpcb.4c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The formation and transport of ionic charges in formic acid-water (HCOOH-H2O) mixtures with initial water mole fractions ranging from XH2Oi = 0 to 1 were investigated using 13C and 1H NMR, FTIR spectroscopy, viscosity, conductivity, and pH measurements. The maximum molar concentration of ions (H3O+ and HCOO-), along with the relative differences between theoretical and experimental densities, spin-lattice relaxation times (T1), activation energies (Ea), viscosity (η), and conductivity (σ), were identified within the range of XH2Oi ≈ 0.5-0.7. These results indicate that pure formic acid (FA) solutions predominantly consist of cyclic dimers at room temperature. As the water mole fraction increases up to 0.6, a structural shift occurs from cyclic dimers to a mixture of linear and cyclic dimers, driven by the formation of strong hydrogen bonds. Beyond a water mole fraction of 0.6, the structure transitions to linear dimers, with FA molecules behaving as free entities in the water. Furthermore, the acidity was found to increase approximately 2-fold with every 0.1 increment in water mole fraction. These findings are critical for understanding the kinetics of formic acid anions in body fluids, the structure of the hydrogen bonding network, and ionization energies.
Collapse
Affiliation(s)
- Ahmad Telfah
- Fachhochschule Dortmund University of Applied Sciences and Arts, Dortmund 44139, Germany
- Department of Physics, Yarmouk University (YU), Irbid 21163, Jordan
| | - Qais M Al Bataineh
- Experimental Physics, TU Dortmund University, Dortmund 44227, Germany
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Khansaa Al-Essa
- Department of Chemistry, Jerash University, Jerash 26150, Jordan
| | - Ali Al-Sawalmih
- Marine Science Station, The University of Jordan, P.O. Box 195, Aqaba 77110, Jordan
| | - Mahmoud Telfah
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Mikheil Gogiashvili
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Ahmed Bahti
- Experimental Physics, TU Dortmund University, Dortmund 44227, Germany
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Günter Majer
- Max-Planck-Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart 70569, Germany
| | - Roland Hergenröder
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| |
Collapse
|
2
|
Lim DK, Kumar PPP. Recent advances in SERS-based bioanalytical applications: live cell imaging. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1521-1534. [PMID: 39678181 PMCID: PMC11636400 DOI: 10.1515/nanoph-2023-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/16/2024] [Indexed: 12/17/2024]
Abstract
Raman scattering can provide information on molecular fingerprints, which have been widely applied in various fields of material science and nanobiotechnology. Notably, low interference with water molecules in obtaining the Raman spectra between 500 and 2000 cm-1 made it a powerful spectroscopic tool in biology, such as imaging and signaling for a living cell. To be a robust tool for cell biology, the performance of obtaining molecular-specific information with high sensitivity, high resolution in real time, and without inducing cell damage is strongly required. The conventional fluorescence-based method has been suffered from the rapid photobleaching of organic fluorophores and the lack of molecular information. In contrast, Raman scattering is a promising spectroscopic tool to acquire cellular information, and the extremely low signal intensity of Raman scattering could be amplified by incorporating the plasmonic nanomaterials. Along with the fundamental research focus on surface-enhanced Raman scattering (SERS), the practical approaches of SERS for cellular imaging as a new tool for drug screening and monitoring cellular signals have been extensively explored based on new optical setups and new designing strategies for the nanostructures. Diverse nanostructure and surface chemistry for targeting or sensing have been played pivotal roles in acquiring cellular information and high resolution cell imaging. In this regard, this review focused on the recent advances of SERS-based technologies for a live cell imaging investigated such as potential drug screening, signaling for chemicals or biomolecules in cell, in situ sensing, and high spatiotemporal resolution.
Collapse
Affiliation(s)
- Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea
- Brain Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul02792, Republic of Korea
| | | |
Collapse
|
3
|
Ababneh R, Telfah A, Al Bataineh QM, Tolstik E, Dierks J, Hergenröder R. 1H, 31P NMR, Raman and FTIR spectroscopies for investigating phosphoric acid dissociation to understand phosphate ion kinetics in body fluids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123594. [PMID: 37976576 DOI: 10.1016/j.saa.2023.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
The study investigates the formation and transportation of ionic charge carriers in phosphoric acid-water system. This investigation encompasses an analysis of 1H and 31P NMR chemical shifts, self-diffusion coefficients, spin-lattice relaxation rates, spin-spin relaxation rates, activation energies, dissociation constants, electrical conductivity, and Raman shifts, along with FTIR spectra across various water concentrations. Significantly, the maxima observed in these curves at around 0.8 water molar fraction predominantly from the unique molecular arrangement between phosphoric acid and water molecules, influenced by a hydrogen bonding network. These findings yield valuable insights into phosphate ion kinetics within body fluids, covering essential aspects like hydrogen bonding networks, ionization processes, and the energy kinetics of phosphoric dissociation. A customized semiempirical model is applied to calculate dissociated species (water, phosphoric acid, and hydronium ion) at different water contents within a wide range of water mole fraction. Furthermore, this investigation extends to the dissociation of phosphoric acid in DMEM cell culture media, offering a more precise model for phosphate ionic kinetics within body fluids, especially at nominal phosphate concentrations of approximately 1:700μL.
Collapse
Affiliation(s)
- Riad Ababneh
- Department of Physics, Yarmouk University (YU), Irbid 21163, Jordan
| | - Ahmad Telfah
- Department of Physics, Yarmouk University (YU), Irbid 21163, Jordan; Nanotechnology Center, The University of Jordan, 11942 Amman, Jordan; Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Qais M Al Bataineh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany; Experimental Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Johann Dierks
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| |
Collapse
|
4
|
Zhang S, Fang W, Zhao B, Zhang W, Men Z. Investigating the H-Bond network of Ternary (Xylitol-Water-Acetic acid) Aqueous Solutions by Raman Spectroscopy and DFT. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Töpfer K, Käser S, Meuwly M. Double proton transfer in hydrated formic acid dimer: Interplay of spatial symmetry and solvent-generated force on reactivity. Phys Chem Chem Phys 2022; 24:13869-13882. [PMID: 35620978 PMCID: PMC9176184 DOI: 10.1039/d2cp01583h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The double proton transfer (DPT) reaction in the hydrated formic acid dimer (FAD) is investigated at molecular-level detail. For this, a global and reactive machine learned (ML) potential energy surface (PES) is developed to run extensive (more than 100 ns) mixed ML/MM molecular dynamics (MD) simulations in explicit molecular mechanics (MM) solvent at MP2-quality for the solute. Simulations with fixed – as in a conventional empirical force field – and conformationally fluctuating – as available from the ML-based PES – charge models for FAD show a significant impact on the competition between DPT and dissociation of FAD into two formic acid monomers. With increasing temperature the barrier height for DPT in solution changes by about 10% (∼1 kcal mol−1) between 300 K and 600 K. The rate for DPT is largest, ∼1 ns−1, at 350 K and decreases for higher temperatures due to destabilisation and increased probability for dissociation of FAD. The water solvent is found to promote the first proton transfer by exerting a favourable solvent-induced Coulomb force along the O–H⋯O hydrogen bond whereas the second proton transfer is significantly controlled by the O–O separation and other conformational degrees of freedom. Double proton transfer in hydrated FAD is found to involve a subtle interplay and balance between structural and electrostatic factors. Simulation of double proton transfer in formic acid dimer by reactive ML potential in explicit molecular mechanics water solvent.![]()
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
6
|
Wang Y, Ruan Y, Du B, Li J, Ebendorff-Heidepriem H, Wang X. Real-time Raman analysis of the hydrolysis of formaldehyde oligomers for enhanced collagen fixation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120285. [PMID: 34455375 DOI: 10.1016/j.saa.2021.120285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde (FA) is widely applied as a fixative for proteins such as collagen. Current studies have confirmed that the reversible oligomer-to-monomer equilibrium of FA in aqueous solution and the proportion of FA monomer is a significant factor affecting tissue fixation. Since the hydrolysis of FA oligomers is a dynamic process affected jointly by different factors, its real time monitoring has proved to be challenging. In this work, by utilizing the well-established Raman technique as an analytical platform, we identified the factors affecting the hydrolysis of FA oligomers by rationally examining the νs (OCO) and νas (OCO) modes with varying conditions, such as time, pH, temperature, and FA concentration. The optimized conditions of the highest hydrolysis rate of oligomers into monomers for fixation on collagen and tissues have been found to be relatively low FA concentration (≤5%) in phosphate-buffered saline at pH 9.0 in room temperature. In order to compare the fixation quality of the optimized conditions to that of the conventional conditions used by current medical practices (4% FA concentration in tap water under room temperature), Raman spectroscopy and chemical derivatization methods with o-phthalaldehyde and fluorescent probe FAP-1 have been investigated, and our results revealed that the FA molecules under our optimized conditions have reacted with at least 15% more amino groups within collagen compared to those under the conventional conditions mentioned above. This study provides direct evidence of the FA equilibrium in solution by Raman spectroscopy, which could be applied for the optimal use of FA in medicine, even at an industrial scale.
Collapse
Affiliation(s)
- Yansong Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide 5005, Australia
| | - Yinlan Ruan
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide 5005, Australia.
| | - Bobo Du
- Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide 5005, Australia; The Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ji Li
- Institute of Biomass & Functional Materials (IBFM), College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide 5005, Australia
| | - Xuechuan Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials (IBFM), College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Sun T, Zheng S, Du H, Tao Z. Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery. NANO-MICRO LETTERS 2021; 13:204. [PMID: 34625857 PMCID: PMC8501177 DOI: 10.1007/s40820-021-00733-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 05/21/2023]
Abstract
Although aqueous zinc-ion batteries have gained great development due to their many merits, the frozen aqueous electrolyte hinders their practical application at low temperature conditions. Here, the synergistic effect of cation and anion to break the hydrogen-bonds network of original water molecules is demonstrated by multi-perspective characterization. Then, an aqueous-salt hydrates deep eutectic solvent of 3.5 M Mg(ClO4)2 + 1 M Zn(ClO4)2 is proposed and displays an ultralow freezing point of - 121 °C. A high ionic conductivity of 1.41 mS cm-1 and low viscosity of 22.9 mPa s at - 70 °C imply a fast ions transport behavior of this electrolyte. With the benefits of the low-temperature electrolyte, the fabricated Zn||Pyrene-4,5,9,10-tetraone (PTO) and Zn||Phenazine (PNZ) batteries exhibit satisfactory low-temperature performance. For example, Zn||PTO battery shows a high discharge capacity of 101.5 mAh g-1 at 0.5 C (200 mA g-1) and 71 mAh g-1 at 3 C (1.2 A g-1) when the temperature drops to - 70 °C. This work provides an unique view to design anti-freezing aqueous electrolyte.
Collapse
Affiliation(s)
- Tianjiang Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shibing Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Haihui Du
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
8
|
Zhang W, Ma J, Sun DW. Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications. Crit Rev Food Sci Nutr 2020; 61:2623-2639. [DOI: 10.1080/10408398.2020.1828814] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wenyang Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|