1
|
Goni LK, Ali SA, Al-Muallem HA, Jafar Mazumder MA. Synthesis of a new quaternary ammonium salt for efficient inhibition of mild steel corrosion in 15 % HCl: Experimental and theoretical studies. Heliyon 2024; 10:e38425. [PMID: 39416823 PMCID: PMC11482660 DOI: 10.1016/j.heliyon.2024.e38425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The corrosion phenomenon and its economic impacts can hardly be ignored in any application. This study synthesized a quaternary ammonium salt (3) containing hydrophobic dodecyl and electron-rich diallylbenzyl amine moieties to be used in 15 % HCl as a corrosion inhibitor of mild steel. Several techniques, such as 1H and 13C NMR, IR, TGA, and elemental analysis, have been used to characterize inhibitor 3. Popular corrosion measurement techniques, namely weight loss, potentiodynamic polarization techniques, and electrochemical impedance spectroscopy, have been used to determine the efficiency of inhibitor 3. At 303 K and a moderately low concentration of 50 ppm, the quaternary ammonium salt-based inhibitor demonstrated a maximum efficiency of ≈95.0 %. At elevated temperatures of 313, 323, and 333 K, the inhibition efficacy values were recorded as 91.3, 82.8, and 75.0 %, respectively. Adsorption isotherm study revealed that the adsorption of inhibitor 3 followed Langmuir adsorption isotherm. The value ofΔ G a d s ° was found to be - 40.19 kJ mol-1, indicating that inhibitor 3 became adsorbed via a mixed physi-chemisorption mechanism. A very high adsorption constant (K a d s ) of 1.53 × 105 L mol-1 suggested strong adsorption of inhibitor 3. The difference in activation energy (E a ) value of 42.4 kJ mol-1 between the control and the inhibited solution indicated an efficient adsorption of inhibitor 3. The ability of inhibitor 3 to retard both anodic and cathodic half-cell reactions was proved via open circuit potential and Tafel curves studies. Detailed discussions on the change in corrosion current densities (i c o r r ), polarization (R p ) and charge transfer (R c t ) resistances have been offered to discuss the inhibition efficiency. Water contact angle measurement showed a drastic increase in mild steel surface hydrophobicity following inhibitor 3 adsorption. SEM-EDX and XPS studies confirmed the definitive presence of inhibitor 3 on the mild steel surface. Density functional theory (DFT) studies revealed the frontier molecular orbitals with which the metal surface interacts. A detailed corrosion inhibition mechanism has been offered in the context of adsorption isotherm and DFT studies.
Collapse
Affiliation(s)
- Lipiar K.M.O. Goni
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Shaikh A. Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hasan A. Al-Muallem
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammad A. Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Lavanya M, Machado AA. Surfactants as biodegradable sustainable inhibitors for corrosion control in diverse media and conditions: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168407. [PMID: 37939963 DOI: 10.1016/j.scitotenv.2023.168407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Corrosion is a challenging and potentially harmful process that involves the continuing, impulsive deterioration of metallic structures via reactions involving environmental components and electro- or chemical processes. To inhibit corrosion, various additives are added. Traditional additives, on the other hand, contain environmentally hazardous substances. Surfactants are less expensive, easier to manufacture, and have high inhibitory efficacy and low toxicity compared to standard corrosion inhibitors. They are often employed as corrosion inhibitors to protect metallic materials against corrosion. METHODS Surfactant molecules' amphiphilic nature promotes adsorption at surfaces such as the metal/metal oxide-water interface. Surfactant adsorption on metals and metal oxides forms a barrier that can prevent corrosion. SIGNIFICANT FINDINGS This review of surfactants as corrosion inhibitors aims to offer a systemic evaluation of various surfactant physical and chemical properties, surfactant influence in corrosion inhibition, and surfactant used in corrosion inhibition that can be used to enhance the efficacy of surfactant use as corrosion inhibitors in a variety of environments. The effect of several parameters on the potential to suppress corrosion of surfactant molecule series is also discussed here.
Collapse
Affiliation(s)
- M Lavanya
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Avryl Anna Machado
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Chemical and Bioprocess Engineering, Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
3
|
Abd El-Lateef HM, Tantawy AH, Soliman KA, Eid S, Abo-Riya MA. Novel Imine-Tethering Cationic Surfactants: Synthesis, Surface Activity, and Investigation of the Corrosion Mitigation Impact on Carbon Steel in Acidic Chloride Medium via Various Techniques. Molecules 2023; 28:molecules28114540. [PMID: 37299016 DOI: 10.3390/molecules28114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Novel imine-tethering cationic surfactants, namely (E)-3-((2-chlorobenzylidene)amino)-N-(2-(decyloxy)-2-oxoethyl)-N,N-dimethylpropan-1-aminium chloride (ICS-10) and (E)-3-((2-chlorobenzylidene)amino)-N,N-dimethyl-N-(2-oxo-2-(tetradecyloxy)ethyl)propan-1-aminium chloride (ICS-14), were synthesized, and the chemical structures were elucidated by various spectroscopic approaches. The surface properties of the target-prepared imine-tethering cationic surfactants were investigated. The effects of both synthesized imine surfactants on carbon steel corrosion in a 1.0 M HCl solution were investigated by weight loss (WL), potentiodynamic polarization (PDP), and scanning electron microscopy (SEM) methods. The outcomes show that the inhibition effectiveness rises with raising the concentration and diminishes with raising the temperature. The inhibition efficiency of 91.53 and 94.58 % were attained in the presence of the optimum concentration of 0.5 mM of ICS-10 and ICS-14, respectively. The activation energy (Ea) and heat of adsorption (Qads) were calculated and explained. Additionally, the synthesized compounds were investigated using density functional theory (DFT). Monte Carlo (MC) simulation was utilized to understand the mechanism of adsorption of inhibitors on the Fe (110) surface.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Ahmed H Tantawy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Kamal A Soliman
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Salah Eid
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Chemistry Department, College of Science and Arts, Jouf University, Alqurayat 77455, Saudi Arabia
| | - Mohamed A Abo-Riya
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
4
|
Elaraby A, El-samad SA, khamis EA, Zaki EG. Theoretical and electrochemical evaluation of tetra-cationic surfactant as corrosion inhibitor for carbon steel in 1 M HCl. Sci Rep 2023; 13:942. [PMID: 36653379 PMCID: PMC9849212 DOI: 10.1038/s41598-023-27513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Recently, scientist study the role of surfactants for carbon steel corrosion protection. In the present study, newly tetra-cationic surfactant (CS4: 1,N1'-(ethane-1,2-diyl) bis (N1, N2-didodecyl-N2-(2- (((E)-3-hydroxy-4-methoxy-benzylidene)amino)ethyl)ethane-1,2-diaminium) chloride) based on Schiff-base compound(5,5'-((1E,17E)-2,5,8,11,14,17-hexaazaoctadeca-1,17-diene-1,18-diyl)bis(2-methoxyphenol) was synthesised, purified and characterized using FTIR and 1HNMR spectroscopy. The synthesized Tetra-cationic surfactant (CS4) was evaluated as anti-corrosion for carbon steel (CS-metal) in aggressive 1 M HCl using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques (PDP). CS4 compound had a good surface-active property by reducing the surface tension as a result to the hydrophobic chains role. The prepared CS4 behaved as hybrid inhibitor (mixed-type) by blocking the anodic and cathodic sites. CS4 exhibited good inhibition efficiency reached 95.69%. The surface morphology of CS-metal was studied using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS)confirming the anti-corrosive effect of CS4 compound returned into the adsorption process of CS4 molecules over CS-metal which obeyed Langmuir adsorption isotherm. The inhibitive effect of CS4 was supported by theoretical quantum chemical studies using the density functional theory (DFT), Monte Carlo (MC) and Molecular Dynamic (MD) simulation.
Collapse
Affiliation(s)
- A. Elaraby
- grid.454081.c0000 0001 2159 1055Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Shrouk. Abd El-samad
- grid.454081.c0000 0001 2159 1055Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Eman. A. khamis
- grid.454081.c0000 0001 2159 1055Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt ,University College of Umluj-Tabuk University, Umluj, Saudi Arabia
| | - E. G. Zaki
- grid.454081.c0000 0001 2159 1055Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| |
Collapse
|
5
|
Abo-riya M, soliman K, El-lateef HA, Tantawy A, Eid S. Electrochemical, computational, chemical and surface investigation on novel synthesized imine surfactants as an eco-friendly inhibitor for carbon steel corrosion in 1 M HCl.. [DOI: 10.21203/rs.3.rs-2403672/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Novel quaternary ammonium surfactants based on imines, namely, (E)-3-((2-chlorobenzylidene)amino)-N-(2-(decyloxy)-2-oxoethyl)-N,N-dimethylpropan-1-aminium chloride, (ICS-10) and (E)-3-((2-chlorobenzylidene)amino)-N,N-dimethyl-N-(2-oxo-2-(tetradecyloxy)ethyl)propan-1-aminium chloride (ICS-14) were synthesized and their chemical structures were determined by different spectroscopic approaches. The surface properties of the target-prepared surfactants were investigated. The effects of both synthesized imine surfactants on carbon-steel corrosion in 1.0 M HCl solution were investigated by weight loss (WL), potentiodynamic polarization (PDP), and scanning electron microscopy (SEM) methods. The outcomes show that the inhibition effectiveness rises with raising the concentration and diminishes with raising the temperature. The inhibition efficiency of 91.53 and 94.58% were attained in the optimum concentration of 0.5 mM of ICS-10 and ICS-14, respectively. The activation energy (Ea) and heat of adsorption (Qads) were calculated and explained. Also, the synthesized compounds were investigated using density functional theory (DFT). Monte Carlo (MC) simulation was utilized to understand the mechanism of adsorption of inhibitors on the Fe (110) surface.
Collapse
|
6
|
Fabrication of Encapsulated Gemini Surfactants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196664. [PMID: 36235201 PMCID: PMC9573393 DOI: 10.3390/molecules27196664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
(1) Background: Encapsulation of surfactants is an innovative approach that allows not only protection of the active substance, but also its controlled and gradual release. This is primarily used to protect metallic surfaces against corrosion or to create biologically active surfaces. Gemini surfactants are known for their excellent anticorrosion, antimicrobial and surface properties; (2) Methods: In this study, we present an efficient methods of preparation of encapsulated gemini surfactants in form of alginate and gelatin capsules; (3) Results: The analysis of infrared spectra and images of the scanning electron microscope confirm the effectiveness of encapsulation; (4) Conclusions: Gemini surfactants in encapsulated form are promising candidates for corrosion inhibitors and antimicrobials with the possibility of protecting the active substance against environmental factors and the possibility of controlled outflow.
Collapse
|
7
|
Aslam R, Mobin M, Zehra S, Aslam J. A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Newly synthesized quaternary ammonium bis-cationic surfactant utilized for mitigation of carbon steel acidic corrosion; theoretical and experimental investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
von Putlitz GS, Vázquez AE, Gómez FR, Negrón-Silva G, Figueroa IA, Orozco-Cruz R, Miralrio A, Castro M. Corrosion inhibition of 1-Benzyl-4-((benzyloxy) methyl)-1H-1,2,3-triazole (BBT) for C844 bronze in saline medium and theoretical study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Han P, Zhang B, Chang Z, Fan J, Du F, Xu C, Liu R, Fan L. The anticorrosion of surfactants toward L245 steel in acid corrosion solution: Experimental and theoretical calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv Colloid Interface Sci 2022; 299:102581. [PMID: 34891074 DOI: 10.1016/j.cis.2021.102581] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Gemini surfactants consist of two cationic monomers of a surfactant linked together with a spacer. The specific structure of a cationic gemini surfactant is the reason for both its high surface activity and its ability to decrease the surface tension of water. The high surface activity and unique structure of gemini surfactants result in outstanding properties, including antibacterial and antifungal activity, anticorrosion properties, unique aggregation behaviour, the ability to form various structures reversibly in response to environmental conditions, and interactions with biomacromolecules such as DNA and proteins. These properties can be tailored by selecting the optimal structure of a gemini surfactant in terms of the nature and length of its alkyl substituents, spacer, and head group. Additionally, regarding their properties, comparison with their monomeric counterparts demonstrates that gemini surfactants have higher performance efficacy at lower concentrations. Hence, less material is needed, and the toxicity is lower. However, there are some limitations regarding their biocompatibility that have led researchers to develop amino acid-based and sugar-based gemini surfactants. Owing to their remarkable properties, cationic gemini surfactants are promising candidates for bioapplications such as drug delivery systems, gene carriers, and biomaterial surface modification.
Collapse
|
12
|
Wang D, Li Y, Chang T, Luo A. Experimental and theoretical studies of chitosan derivatives as green corrosion inhibitor for oil and gas well acid acidizing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Brycki BE, Szulc A, Kowalczyk I, Koziróg A, Sobolewska E. Antimicrobial Activity of Gemini Surfactants with Ether Group in the Spacer Part. Molecules 2021; 26:molecules26195759. [PMID: 34641303 PMCID: PMC8510121 DOI: 10.3390/molecules26195759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Due to their large possibility of the structure modification, alkylammonium gemini surfactants are a rapidly growing class of compounds. They exhibit significant surface, aggregation and antimicrobial properties. Due to the fact that, in order to achieve the desired utility effect, the minimal concentration of compounds are used, they are in line with the principle of greenolution (green evolution) in chemistry. In this study, we present innovative synthesis of the homologous series of gemini surfactants modified at the spacer by the ether group, i.e., 3-oxa-1,5-pentane-bis(N-alkyl-N,N-dimethylammonium bromides). The critical micelle concentrations were determined. The minimal inhibitory concentrations of the synthesized compounds were determined against bacteria Escherichia coli ATCC 10536 and Staphylococcus aureus ATCC 6538; yeast Candida albicans ATCC 10231; and molds Aspergillus niger ATCC 16401 and Penicillium chrysogenum ATCC 60739. We also investigated the relationship between antimicrobial activity and alkyl chain length or the nature of the spacer. The obtained results indicate that the synthesized compounds are effective microbicides with a broad spectrum of biocidal activity.
Collapse
Affiliation(s)
- Bogumil Eugene Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
- Correspondence: ; Tel.: +48-61-829-1694
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Ewelina Sobolewska
- Interdisciplinary Doctoral School of the Lodz University of Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
14
|
Alahiane M, Oukhrib R, Berisha A, Albrimi YA, Akbour RA, Oualid HA, Bourzi H, Assabbane A, Nahlé A, Hamdani M. Electrochemical, thermodynamic and molecular dynamics studies of some benzoic acid derivatives on the corrosion inhibition of 316 stainless steel in HCl solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Alahiane M, Oukhrib R, Albrimi YA, Oualid HA, Bourzi H, Akbour RA, Assabbane A, Nahlé A, Hamdani M. Experimental and theoretical investigations of benzoic acid derivatives as corrosion inhibitors for AISI 316 stainless steel in hydrochloric acid medium: DFT and Monte Carlo simulations on the Fe (110) surface. RSC Adv 2020; 10:41137-41153. [PMID: 35519220 PMCID: PMC9057760 DOI: 10.1039/d0ra06742c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/29/2020] [Indexed: 12/02/2022] Open
Abstract
The inhibition efficiency of benzoic acid (C1), para-hydroxybenzoic acid (C2), and 3,4-dihydroxybenzoic acid (C3) towards enhancing the corrosion resistance of austenitic AISI 316 stainless steel (SS) has been evaluated in 0.5 M HCl using weight loss (WL), open circuit potential (OCP), potentiodynamic polarization method, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. The results obtained from the different experimental techniques were consistent and showed that the inhibition efficiency of these inhibitors increased with the increase in concentration in this order C3 > C2 > C1. In addition, the results of the weight loss measurements showed that these inhibitors followed the Villamil isotherm. Quantum chemical calculations and Monte Carlo simulations have also been used for further insight into the adsorption mechanism of the inhibitor molecules on Fe (110). The quantum chemical parameters have been calculated by density functional theory (DFT) at the B3LYP level of theory with 6-31G+(2d,p) and 6-31G++(2d,p) basis sets in gas and aqueous phase. Parameters such as the lowest unoccupied (E LUMO) and highest occupied (E HOMO) molecular orbital energies, energy gap (ΔE), chemical hardness (η), softness (σ), electronegativity (χ), electrophilicity (ω), and nucleophilicity (ε) were calculated and showed the anti-corrosive properties of C1, C2 and C3. Moreover, theoretical vibrational spectra were calculated to exhibit the functional hydroxyl groups (OH) in the studied compounds. In agreement with the experimental data, the theoretical results showed that the order of inhibition efficiency was C3 > C2 > C1.
Collapse
Affiliation(s)
- Mustapha Alahiane
- Ibn Zohr University, Science Faculty, Chemical Department Agadir Morocco
| | - Rachid Oukhrib
- Applied Chemistry-Physics Team, Faculty of Sciences, University of Ibn Zohr Agadir Morocco
| | | | - Hicham Abou Oualid
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University Agadir Morocco
- Green Energy Park, IRESEN, UM6P Benguerir Morocco
| | - Hassan Bourzi
- Ibn Zohr University, Science Faculty, Chemical Department Agadir Morocco
| | - Rachid Ait Akbour
- Ibn Zohr University, Science Faculty, Chemical Department Agadir Morocco
| | - Ali Assabbane
- Ibn Zohr University, Science Faculty, Chemical Department Agadir Morocco
| | - Ayssar Nahlé
- Department of Chemistry, University of Sharjah, College of Sciences PO Box 27272 Sharjah United Arab Emirates
| | - Mohamed Hamdani
- Ibn Zohr University, Science Faculty, Chemical Department Agadir Morocco
| |
Collapse
|