1
|
Shiabiev I, Pysin D, Akhmedov A, Babaeva O, Babaev V, Lyubina A, Voloshina A, Petrov K, Padnya P, Stoikov I. Towards Antibacterial Agents: Synthesis and Biological Activity of Multivalent Amide Derivatives of Thiacalix[4]arene with Hydroxyl and Amine Groups. Pharmaceutics 2023; 15:2731. [PMID: 38140072 PMCID: PMC10747887 DOI: 10.3390/pharmaceutics15122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial resistance to modern antibiotics stimulates the search for new ways to synthesize and modify antimicrobial drugs. The development of synthetic approaches that can easily change different fragments of the molecule is a promising solution to this problem. In this work, a synthetic approach was developed to obtain multivalent thiacalix[4]arene derivatives containing different number of amine and hydroxyl groups. A series of macrocyclic compounds in cone, partial cone, and 1,3-alternate stereoisomeric forms containing -NHCH2CH2R (R = NH2, N(CH3)2, and OH) and -N(CH2CH2OH)2 terminal fragments, and their model non-macrocyclic analogues were obtained. The antibacterial activity against Gram-positive (Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains and cytotoxicity of the obtained compounds were studied. Structure-activity relationships were established: (1) the macrocyclic compounds had high antibacterial activity, while the monomeric compounds had low activity; (2) the compounds in cone and partial cone conformations had better antibacterial activity compared to the compounds in 1,3-alternate stereoisomeric form; (3) the macrocyclic compounds containing -NHCH2CH2N(CH3)2 terminal fragments had the highest antibacterial activity; (4) introduction of additional terminal hydroxyl groups led to a significant decrease in antibacterial activity; (5) the compounds in partial cone conformation had significant bactericidal activity against all studied cell strains; the best selectivity was observed for the compounds in cone conformation. The mechanism of antibacterial activity of lead compounds with terminal fragments -NHCH2CH2N(CH3)2 was proved using model negatively charged POPG vesicles, i.e., the addition of these compounds led to an increase in the size and zeta potential of the vesicles. The obtained results open up the possibility of using the synthesized macrocyclic compounds as promising antibacterial agents.
Collapse
Affiliation(s)
- Igor Shiabiev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Dmitry Pysin
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Alan Akhmedov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Olga Babaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Vasily Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Pavel Padnya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| |
Collapse
|
2
|
Schütz MB, Renner AM, Ilyas S, Lê K, Guliyev M, Krapf P, Neumaier B, Mathur S. 18F-Labeled magnetic nanovectors for bimodal cellular imaging. Biomater Sci 2021; 9:4717-4727. [PMID: 34032225 DOI: 10.1039/d1bm00616a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface modification of nanocarriers enables selective attachment to specific molecular targets within a complex biological environment. Besides the enhanced uptake due to specific interactions, the surface ligands can be utilized for radiolabeling applications for bimodal imaging ensured by positron emission topography (PET) and magnetic resonance imaging (MRI) functions in one source. Herein, we describe the surface functionalization of magnetite (Fe3O4) with folic acid as a target vector. Additionally, the magnetic nanocarriers were conjugated with appropriate ligands for subsequent copper-catalyzed azide-alkyne cycloaddition or carbodiimide coupling reactions to successfully achieve radiolabeling with the PET-emitter 18F. The phase composition (XRD) and size analysis (TEM) confirmed the formation of Fe3O4 nanoparticles (6.82 nm ± 0.52 nm). The quantification of various surface functionalities was performed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet-visible microscopy (UV-Vis). An innovative magnetic-HPLC method was developed in this work for the determination of the radiochemical yield of the 18F-labeled NPs. The as-prepared Fe3O4 particles demonstrated high radiochemical yields and showed high cellular uptake in a folate receptor overexpressing MCF-7 cell line, validating bimodal imaging chemical design and a magnetic HPLC system. This novel approach, combining folic acid-capped Fe3O4 nanocarriers as a targeting vector with 18F labeling, is promising to apply this probe for bimodal PET/MR-studies.
Collapse
Affiliation(s)
- Markus B Schütz
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Alexander M Renner
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Khan Lê
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Mehrab Guliyev
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Philipp Krapf
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| |
Collapse
|