1
|
Aleksandrova YI, Shurpik DN, Nazmutdinova VA, Zelenikhin PV, Subakaeva EV, Sokolova EA, Leonteva YO, Mironova AV, Kayumov AR, Petrovskii VS, Potemkin II, Stoikov II. Antibacterial Activity of Various Morphologies of Films Based on Guanidine Derivatives of Pillar[5]arene: Influence of the Nature of One Substitute on Self-assembly. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17163-17181. [PMID: 38530408 DOI: 10.1021/acsami.3c18610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The progress of the pillar[5]arene chemistry allowed us to set out a new concept on application of the supramolecular assemblies to create antimicrobial films with variable surface morphologies and biological activities. Antibacterial films were derived from the substituted pillar[5]arenes containing nine pharmacophoric guanidine fragments and one thioalkyl substituent. Changing the only thioalkyl fragment in the macrocycle structure made it possible to control the biological activity of the resulting antibacterial coating. Pretreatment of the surface with aqueous solution of the amphiphilic pillar[5]arenes reduced the biofilm thickness by 56 ± 10% of Gram-positive Staphylococcus aureus in the case of the pillar[5]arene containing a thiooctyl fragment and by 52 ± 7% for the biofilm of Gram-negative Klebsiella pneumoniae in the case of pillar[5]arene containing a thiooctadecyl fragment. Meanwhile, the cytotoxicity of the synthesized macrocycles was examined at a concentration of 50 μg/mL, which was significantly lower than that of bis-guanidine-based antimicrobial preparations.
Collapse
Affiliation(s)
- Yulia I Aleksandrova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Dmitriy N Shurpik
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Viktoriya A Nazmutdinova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgeniya V Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgeniya A Sokolova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Yulia O Leonteva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Anna V Mironova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Vladislav S Petrovskii
- Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russian Federation
- N. N. Semenov Federal Research Center of Chemical Physics of Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russian Federation
| | - Igor I Potemkin
- Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russian Federation
| | - Ivan I Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| |
Collapse
|
2
|
Ermakova EA, Ivanova AV, Kurbanov RK, Shurpik DN, Stoikov II, Zuev YF, Khairutdinov BI. Stereochemical inversion of pillar[5]arene. NMR and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Sabin C, Sam S, Hrishikes A, Salin B, Vigneshkumar PN, George J, John F. Supramolecular Drug Delivery Systems Based on Host‐Guest Interactions for Nucleic Acid Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christeena Sabin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Samanta Sam
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - A. Hrishikes
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Biyatris Salin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - P. N. Vigneshkumar
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
- Department of Chemistry The University of British Columbia Okanagan Vancouver BC V6T 1Z4 Canada
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| |
Collapse
|
4
|
Skvortsova P, Shurpik D, Stoikov I, Khairutdinov B. Pillar[5]arene-induced DNA condensation: Liquid–liquid phase separation in pillar[5]arene-oligonucleotide system. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Liman R, Kursunlu AN, Ozmen M, Arslan S, Mutlu D, Istifli ES, Acikbas Y. Synthesis of water soluble symmetric and asymmetric pillar[5]arene derivatives: Cytotoxicity, apoptosis and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
6
|
Abstract
In this work, we investigated aggregation of native DNA and thiacalix[4]arene derivative bearing eight terminal amino groups in cone configuration using various redox probes on the glassy carbon electrode. It was shown that sorption transfer of the aggregates on the surface of the electrode covered with carbon black resulted in changes in electrostatic interactions and diffusional permeability of the surface layer. Such changes alter the signals of ferricyanide ion, methylene green and hydroquinone as redox probes to a degree depending on their specific interactions with DNA and own charge. Inclusion of DNA in the surface layer was independently confirmed by scanning electron microscopy, electrochemical impedance spectroscopy and experiments with doxorubicin as a model intercalator. Thermal denaturing of DNA affected the charge separation on the electrode interface and the signals of redox probes. Using hydroquinone, less sensitive to electrostatic interactions, made it possible to determine from 10 pM to 1.0 nM doxorubicin (limit of detection 3 pM) after 10 min incubation. Stabilizers present in the commercial medications did not alter the signal. The DNA sensors developed can find future application in the assessment of the complexes formed by DNA and macrocycles as delivery agents for small chemical species.
Collapse
|
7
|
Silanteva IA, Komolkin AV, Mamontova VV, Gabrusenok PV, Vorontsov-Velyaminov PN, Santer S, Kasyanenko NA. Cis-Isomers of Photosensitive Cationic Azobenzene Surfactants in DNA Solutions at Different NaCl Concentrations: Experiment and Modeling. J Phys Chem B 2021; 125:11197-11207. [PMID: 34586822 DOI: 10.1021/acs.jpcb.1c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA interaction with cis-isomers of photosensitive azobenzene-containing surfactants was studied by both experimental methods and computer simulation. It was shown that before the organization of micelles, such surfactants in the cis-conformation form associates of only a single type with a disordered orientation of molecules. In contrast, for trans-isomers, there exist two types of associates with head-to-head or head-to-tail orientations of molecules in dependence on salt concentration in a solution. The comparison of cis- and trans-isomer binding to DNA and the influence of salt concentration on the formation of their complexes with DNA were studied. It was shown that cis-isomers interact with phosphate groups of DNA and that their molecules were also located along the minor groove of DNA.
Collapse
Affiliation(s)
- Irina A Silanteva
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Andrei V Komolkin
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Veronika V Mamontova
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel V Gabrusenok
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel N Vorontsov-Velyaminov
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Svetlana Santer
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nina A Kasyanenko
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| |
Collapse
|