Kaur R, Kumar H, Kumar B, Singla M, Kumar V, Ghfar AA, Pandey S. Effect of amino acid on the surface adsorption and micellar properties of surface active ILs varying in cationic head groups.
Heliyon 2022;
8:e10363. [PMID:
36082336 PMCID:
PMC9445298 DOI:
10.1016/j.heliyon.2022.e10363]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The interfacial along with bulk characteristics of the aqueous solutions of ILs with dissimilar cationic head group viz. 1-dodecyl-3-methylimidazolium bromide ([C12mim][Br]), and N-dodecyl-N-methylmorpholinium bromide ([Mor1,12][Br]) in the absence and the presence of an amino acid L-Methionine as an external additive have been examined by electrical conductivity, UV-Visible, surface tension, and DLS measurements. The CMC values, and the lowest maximum surface excess concentration (Гmax) achieved from all three techniques, and surface tension measurements respectively displayed more surface activity of the [C12mim][Br] than the [Mor1,12][Br]. Also, the morpholinium head group is less hazardous than imidazolium, it can be utilised to design ILs that are greener, mainly in combination with polar, small, and non-toxic side chains and anions.
Collapse