1
|
Rahimpour E, Moradi M, Sheikhi-Sovari A, Rezaei H, Rezaei H, Jouyban-Gharamaleki V, Kuentz M, Jouyban A. Comparative Drug Solubility Studies Using Shake-Flask Versus a Laser-Based Robotic Method. AAPS PharmSciTech 2023; 24:207. [PMID: 37817041 DOI: 10.1208/s12249-023-02667-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Drug solubility is of central importance to the pharmaceutical sciences, but reported values often show discrepancies. Various factors have been discussed in the literature to account for such differences, but the influence of manual testing in comparison to a robotic system has not been studied adequately before. In this study, four expert researchers were asked to measure the solubility of four drugs with various solubility behaviors (i.e., paracetamol, mesalazine, lamotrigine, and ketoconazole) in the same laboratory with the same instruments, method, and material sources and repeated their measurements after a time interval. In addition, the same solubility data were determined using an automated laser-based setup. The results suggest that manual testing leads to a handling influence on measured solubility values, and the results were discussed in more detail as compared to the automated laser-based system. Within the framework of unavoidable uncertainties of solubility testing, it is a possibility to combine minimal experimental testing that is preferably automated with mathematical modeling. That is a practical suggestion to support future pharmaceutical development in a more efficient way.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Moradi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Homa Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadis Rezaei
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, 4132, Muttenz, Switzerland
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Pharmacy, Near East University, Mercin, Turkey.
| |
Collapse
|
2
|
Hussain A, Afzal O, Yasmin S, Haider N, Altamimi AS, Martinez F, Acree WE, Ramzan M. Preferential Solvation Study of Rosuvastatin in the {PEG400 (1) + Water (2)} Cosolvent Mixture and GastroPlus Software-Based In Vivo Predictions. ACS OMEGA 2023; 8:12761-12772. [PMID: 37065087 PMCID: PMC10099431 DOI: 10.1021/acsomega.2c07968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Rosuvastatin (RST) is a poorly water-soluble drug responsible for limited in vivo dissolution and subsequently low oral systemic absorption (poor bioavailability). The mole fraction solubility values of RST in various ratios of binary mixtures "{PEG400 (1) + water (2)}" at 298.15 K were employed to investigate the preferential solvation (PS) of RST (3) by the binary components. Moreover, the GastroPlus program predicted the drug dissolution/absorption rates, plasma drug concentration, and compartmental regional drug absorbed from a conventional tablet as compared to the RST-loaded (PEG400 + water) mixture (at x 1 = 0.5) in healthy subjects (considering the fast condition). Fedors' method was adopted to estimate the values of molar volume (314.8 cm3·mol-1) and Hildebrand solubility parameter (28.08 MPa1/2) of RST. The results of inverse Kirkwood-Buff integrals showed the PS of RST by PEG400 as observed in all studied ratios of the binary mixture. The highest PS value (δx 1,3 = 1.65 × 10-2) for RST by PEG400 was attained at x 1 = 0.5. Finally, the GastroPlus program predicted the maximum dissolution rate [20 mg within 15 min as compared to pure RST (1.5 mg within 15 min)]. Moreover, the program predicted increased in vivo oral absorption (1.2 μg/mL) and enhanced regional absorption (95.3%) of RST from upper segments of the gastrointestinal tract for the RST-loaded PEG400 + water mixture in humans as compared to conventional tablets (87.5% as total regional absorption and 0.88 μg/mL as in vivo absorption). Hence, the present binary system ferrying RST can be a promising strategy to control systemic dyslipidemia after oral or subcutaneous administration.
Collapse
Affiliation(s)
- Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sabina Yasmin
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Nazima Haider
- Department
of Pathology, College of Medicine, King
Khalid University, Abha 61421, Saudi Arabia
| | | | - Fleming Martinez
- Grupo
de Investigaciones Farmacéutico-Fisicoquímicas, Departamento
de Farmacia, Universidad Nacional de Colombia,
Sede Bogotá, Cra
30 No. 45-03, Bogotá D. C. 111321, Colombia
| | - William E. Acree
- Department
of Chemistry, University of North Texas, Denton, Texas 76203-5070, United States
| | - Mohhammad Ramzan
- School
of Pharmacy, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara, Punjab 144001, India
| |
Collapse
|
3
|
Cao Y, Zhang J, Wan X, Jia S, Zhang G, Zhou Z, Wu S. Effects of intermolecular interactions and solvent properties on the solid-liquid phase equilibrium of isosorbide 5-mononitrate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Solubility measurement, molecular simulation and thermodynamic analysis of guanidine hydrochloride in eleven neat solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Jouyban-Gharamaleki V, Jouyban A, Zhao H, Martinez F, Rahimpour E. Solubility study of ketoconazole in propylene glycol and ethanol mixtures at different temperatures: A laser monitoring method. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Hussain A, Altamimi MA, Alshehri S, Imam SS, Alnemer UA, Haque MW. Experimental Solubility of Ketoconazole, Validation Models, and In vivo Prediction in Human Based on GastroPlus. AAPS PharmSciTech 2021; 22:194. [PMID: 34184161 DOI: 10.1208/s12249-021-02075-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
The study aimed to identify a suitable cosolvent + water mixture for subcutaneous (sub-Q) delivery of ketoconazole (KETO). The solubility was assessed for several dimethyl acetamide (DMA) + water mixtures at T = 293.2 to 318.2 K and pressure P = 0.1 MPa. The experimental solubility (xe) was validated using the Van 't Hoff and Yalkowsky models and functional thermodynamic parameters (enthalpy ΔsolH°, entropy ΔsolS°, and Gibbs free energy ΔsolG°). The in vitro drug release study was performed at physiological pH, and the data served as the input to GastroPlus, which predicted the in vivo performance of KETO dissolved in a DMA + water cosolvent mixture for sub-Q delivery in human. The maximum solubility (mole fraction) of KETO (9.81 × 10-1) was obtained for neat DMA at 318.2 K whereas the lowest value (1.7 × 10-5) was for pure water at 293.2 K. An apparent thermodynamic analysis based on xe gave positive values for the functional parameters. KETO dissolution requires energy, as evidenced by the high positive values of ΔsolH° and ΔsolG°. Interestingly, ΔsolG° progressively decreased with increasing concentration of DMA in the DMA + water mixture, suggesting that the DMA-based molecular interaction improved the solubilization. Positive values of ΔsolG° and ΔsolS° for each DMA + water cosolvent mixture corroborated the endothermic and entropy-driven dissolution. GastroPlus predicted better absorption of KETO through sub-Q delivery than oral delivery. Hence, the DMA + water mixture may be a promising system for sub-Q delivery of KETO to control topical and systemic fungal infections.
Collapse
|