1
|
Yeboah J, Metott ZJ, Butch CM, Hillesheim PC, Mirjafari A. Are nature's strategies the solutions to the rational design of low-melting, lipophilic ionic liquids? Chem Commun (Camb) 2024; 60:3891-3909. [PMID: 38420843 PMCID: PMC10994746 DOI: 10.1039/d3cc06066g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ionic liquids (ILs) have emerged as a new class of materials, displaying a unique capability to self-assemble into micelles, liposomes, liquid crystals, and microemulsions. Despite evident interest, advancements in the controlled formation of amphiphilic ILs remain in the early stages. Taking inspiration from nature, we introduced the concept of lipid-like (or lipid-inspired) ILs more than a decade ago, aiming to create very low-melting, highly lipophilic ILs that are potentially bio-innocuous - a combination of attributes that is frequently antithetical but highly desirable from several application-specific standpoints. Lipid-like ILs are a subclass of functional organic liquid salts that include a range of lipidic side chains such as saturated, unsaturated, linear, branched, and thioether while retaining melting points below room temperature. It was observed in several homologous series of [Cnmim] ILs that elongation of N-appended alkyl chains to greater than seven carbons leads to a substantial increase in melting point (Tm) - which is the most characteristic feature of ILs. Accordingly, it is challenging to develop ILs with low Tm values while preserving their hydrophobicity and self-organizing properties. We found that two alternative Tm depressive approaches are useful. One of these is the replacement of the double bonds with thioether moieties in the alkyl chains, as detailed in several published papers detailing the chemistry of these ILs. Employing thiol-ene and thiol-yne click reactions is a facile, robust, and orthogonal method to overcome the challenges associated with the synthesis of alkyl thioether-functionalized ILs. The second approach involves replacing the double bonds with the cisoid cyclopropyl motif, mimicking the strategy used by certain organisms to modulate cell membrane fluidity. This discovery has the potential to greatly impact the utilization of lipid-like ILs in various applications, including gene delivery, lubricants, heat transfer fluids, and haloalkane separations, among others. This feature article presents a concise, historical overview, highlighting key findings from our work while offering speculation about the future trajectory of this de novo class of soft organic-ion materials.
Collapse
Affiliation(s)
- John Yeboah
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Zachary J Metott
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Christopher M Butch
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida, 34142, USA.
| | - Arsalan Mirjafari
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA.
| |
Collapse
|
2
|
Adu C, Boucher M, Hillesheim PC, Mirjafari A. Ionic Liquids Containing the Sulfonyl Fluoride Moiety: Integrating Chemical Biology with Materials Design. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2023; 170:066511. [PMID: 38993190 PMCID: PMC11238911 DOI: 10.1149/1945-7111/acdeac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The persistent achievements of ionic liquids in various fields, including medicine and energy necessitate the efficient development of novel functional ionic liquids that exhibit favorable characteristics, alongside the development of practical and scalable synthetic methodologies. Ionic liquids are fundamentally understood as materials in which structure begets function, and the function and applicability of ILs is of utmost concern. It was recently reported that "full fluorosulfonyl" electrolyte is compatible with both the Li metal anode and the metal-oxide cathode that is crucial for the development of high-voltage rechargeable lithium-metal batteries. Inspired by these results, for the first time, we reported the synthesis of a series of ionic liquids with a sulfonyl fluoride motif using an highly effective and modular fluorosulfonylethylation procedure. Herein, we present a detailed analysis of novel sulfonyl fluoride-based ionic liquids paired with the hexafluorophosphate anion. We employed a combination of computational modeling and X-ray crystallographic studies to gain an in-depth understanding of their structure-property correlations.
Collapse
Affiliation(s)
- Clinton Adu
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States of America
| | - Mairead Boucher
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States of America
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States of America
| | - Arsalan Mirjafari
- Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States of America
| |
Collapse
|
3
|
Sun Z, Zheng L, Zhang ZY, Cong Y, Wang M, Wang X, Yang J, Liu Z, Huai Z. Molecular Modelling of Ionic Liquids: Situations When Charge Scaling Seems Insufficient. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020800. [PMID: 36677859 PMCID: PMC9865557 DOI: 10.3390/molecules28020800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Charge scaling as an effective solution to the experiment-computation disagreement in molecular modelling of ionic liquids (ILs) could bring the computational results close to the experimental reference for various thermodynamic properties. According to the large-scale benchmark calculations of mass density, solvation, and water-ILs transfer-free energies in our series of papers, the charge-scaling factor of 0.8 serves as a near-optimal option generally applicable to most ILs, although a system-dependent parameter adjustment could be attempted for further improved performance. However, there are situations in which such a charge-scaling treatment would fail. Namely, charge scaling cannot really affect the simulation outcome, or minimally perturbs the results that are still far from the experimental value. In such situations, the vdW radius as an additional adjustable parameter is commonly tuned to minimize the experiment-calculation deviation. In the current work, considering two ILs from the quinuclidinium family, we investigate the impacts of this vdW-scaling treatment on the mass density and the solvation/partition thermodynamics in a fashion similar to our previous charge-scaling works, i.e., scanning the vdW-scaling factor and computing physical properties under these parameter sets. It is observed that the mass density exhibits a linear response to the vdW-scaling factor with slopes close to -1.8 g/mL. By further investigating a set of physiochemically relevant temperatures between 288 K and 348 K, we confirm the robustness of the vdW-scaling treatment in the estimation of bulk properties. The best vdW-scaling parameter for mass density would worsen the computation of solvation/partition thermodynamics, and a marginal decrease in the vdW-scaling factor is considered as an intermediate option balancing the reproductions of bulk properties and solvation thermodynamics. These observations could be understood in a way similar to the charge-scaling situation. i.e., overfitting some properties (e.g., mass density) would degrade the accuracy of the other properties (e.g., solvation free energies). Following this principle, the general guideline for applying this vdW-tuning protocol is by using values between the density-derived choice and the solvation/partition-derived solution. The charge and current vdW scaling treatments cover commonly encountered ILs, completing the protocol for accurate modelling of ILs with fixed-charge force fields.
Collapse
Affiliation(s)
- Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Zuo-Yuan Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yalong Cong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Mao Wang
- NCS Testing Technology Co., Ltd., No. 13, Gaoliangqiao Xiejie, Beijing 100081, China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Leto Laboratories Co., Ltd., Beijing 100083, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| | - Jingjing Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center, 7F, Tower A, Dongsheng Building, No.8, Zhongguancun East Road, Beijing 100083, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| |
Collapse
|
4
|
Matuszek K, Kar M, Pringle JM, MacFarlane DR. Phase Change Materials for Renewable Energy Storage at Intermediate Temperatures. Chem Rev 2023; 123:491-514. [PMID: 36417460 DOI: 10.1021/acs.chemrev.2c00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thermal energy storage technologies utilizing phase change materials (PCMs) that melt in the intermediate temperature range, between 100 and 220 °C, have the potential to mitigate the intermittency issues of wind and solar energy. This technology can take thermal or electrical energy from renewable sources and store it in the form of heat. This is of particular utility when the end use of the energy is also as heat. For this purpose, the material should have a phase change between 100 and 220 °C with a high latent heat of fusion. Although a range of PCMs are known for this temperature range, many of these materials are not practically viable for stability and safety reasons, a perspective not often clear in the primary literature. This review examines the recent development of thermal energy storage materials for application with renewables, the different material classes, their physicochemical properties, and the chemical structural origins of their advantageous thermal properties. Perspectives on further research directions needed to reach the goal of large scale, highly efficient, inexpensive, and reliable intermediate temperature thermal energy storage technologies are also presented.
Collapse
Affiliation(s)
- Karolina Matuszek
- School of Chemistry, Monash University, Clayton, Victoria3800, Australia
| | - Mega Kar
- School of Chemistry, Monash University, Clayton, Victoria3800, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University Burwood, Burwood, Victoria3125, Australia
| | | |
Collapse
|
5
|
Molecular modelling of ionic liquids: Physical properties of species with extremely long aliphatic chains from a near-optimal regime. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Understanding the physicochemical and transport properties of pyrazolium based ionic liquids bearing iodide and triiodide anions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Fei Y, Chen Z, Zhang J, Yu M, Kong J, Wu Z, Cao J, Zhang J. Thiazolium-based ionic liquids: Synthesis, characterization and physicochemical properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Huo F, Ding J, Tong J, He H. Ionic liquid-air interface probed by sum frequency generation spectroscopy and molecular dynamics simulation: influence of alkyl chain length and anion volume. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1979539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jian Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People’s Republic of China
- College of Chemical Engineering, China University of Petroleum, Beijing, People’s Republic of China
| | - Jiahuan Tong
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|