1
|
Lian M, Tian L, Huang G, Liang S, Zhang Y, Yi N, Fan L, Wu Q, Gan F, Wu Y. Recent Advances in Fluorescent Polyimides. Molecules 2024; 29:4072. [PMID: 39274921 PMCID: PMC11397098 DOI: 10.3390/molecules29174072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Polyimide (PI) refers to a type of high-performance polymer containing imide rings in the main chain, which has been widely used in fields of aerospace, microelectronic and photonic devices, gas separation technology, and so on. However, traditional aromatic PIs are, in general, the inefficient fluorescence or even no fluorescence, due to the strong inter- and intramolecular charge transfer (CT) interactions causing unavoidable fluorescence quenching, which greatly restricts their applications as light-emitting functional layers in the fabrication of organic light-emitting diode (OLED) devices. As such, the development of fluorescent PIs with high fluorescence quantum efficiency for their application fields in the OLED is an important research direction in the near future. In this review, we provide a comprehensive overview of fluorescent PIs as well as the methods to improve the fluorescence quantum efficiency of PIs. It is anticipated that this review will serve as a valuable reference and offer guidance for the design and development of fluorescent PIs with high fluorescence quantum efficiency, ultimately fostering further progress in OLED research.
Collapse
Affiliation(s)
- Manyu Lian
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Liyong Tian
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Guotao Huang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Siming Liang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yangfan Zhang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Longfei Fan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qinghua Wu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yancheng Wu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
2
|
Li H, Wang X, Ding Z, Gao W, Liu Y, Ma K, Hu Z, Wang Y. Crown Ether Copolymerized Polyimide Film: Enhanced Mechanical, Thermal Properties and Low Dielectric Constant under High Frequency. Polymers (Basel) 2024; 16:1188. [PMID: 38732657 PMCID: PMC11085621 DOI: 10.3390/polym16091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymer materials with a low dielectric constant and low dielectric loss have the potential to be applied to high-frequency signal transmissions, such as mobile phone antennas and millimeter wave radars. Two types of diamines, 4,4'-diamino-p-tetraphenyl (DPT) and crown ether diamine (CED), were prepared for ternary copolymerization with BPDA in this study. Cross-links with molecular chains were formed, increasing molecular chain distance by utilizing rings of CED. The MPI films exhibit a good thermal performance with the increase in CED addition, with Tg > 380 °C and CTE from -4 × 10-6 K-1 to 5 × 10-6 K-1. The Young's modulus can reach 8.6 GPa, and the tensile strength is above 200 MPa when 5% and 7% CED are introduced. These MPI films exhibit good mechanical performances. The dielectric constant of PI-10% film can go as low as 3.17. Meanwhile, the relationship between dielectric properties and molecular structure has been demonstrated by Molecular Simulation (MS). PI molecules are separated by low dielectric groups, resulting in a decrease in the dielectric constant.
Collapse
Affiliation(s)
- Heming Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (H.L.); (X.W.); (Z.D.); (W.G.); (Y.L.)
| | - Xinming Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (H.L.); (X.W.); (Z.D.); (W.G.); (Y.L.)
| | - Ziyang Ding
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (H.L.); (X.W.); (Z.D.); (W.G.); (Y.L.)
| | - Weiguo Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (H.L.); (X.W.); (Z.D.); (W.G.); (Y.L.)
| | - Yan Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (H.L.); (X.W.); (Z.D.); (W.G.); (Y.L.)
| | - Ke Ma
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (H.L.); (X.W.); (Z.D.); (W.G.); (Y.L.)
| | - Zhizhi Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (H.L.); (X.W.); (Z.D.); (W.G.); (Y.L.)
- Oxiranchem Holding Group Co., Ltd., Liaoyang 111003, China
| | - Yongqi Wang
- Liaoning Agricultural Technical College, Yingkou 115009, China
| |
Collapse
|
3
|
Ćeranić K, Milovanović B, Petković M. Density functional theory study of crown ether-magnesium complexes: from a solvated ion to an ion trap. Phys Chem Chem Phys 2023; 25:32656-32665. [PMID: 38010878 DOI: 10.1039/d3cp03991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal ion detection rests on host-guest recognition. We propose a theoretical protocol for designing an optimal trap for a desired metal cation. A host for magnesium ions was sought for among derivatives of crown ethers 12-crown-4, 15-crown-5, and 18-crown-6. Mg-crown complexes and their hydrated counterparts with water molecules bound to the cation were optimized using density functional theory. Based on specific geometric criteria, Interacting quantum atoms analysis and density functional theory-based molecular dynamics of Mg-crown complexes immersed in water, crown ethers for optimal accommodation of Mg2+ in aqueous solution were identified. Selectivity of the chosen crowns towards Na+, K+, and Ca2+ ions is addressed.
Collapse
Affiliation(s)
- Katarina Ćeranić
- Innovative Centre of the Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
- University of Belgrade - Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| | - Branislav Milovanović
- University of Belgrade - Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| | - Milena Petković
- University of Belgrade - Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| |
Collapse
|
4
|
Li A, Dong F, Xiong Y. Nitrogen-Rich Porous Organic Polymers from an Irreversible Amine-Epoxy Reaction for Pd Nanocatalyst Carrier. Molecules 2023; 28:4731. [PMID: 37375285 DOI: 10.3390/molecules28124731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrogen-rich porous organic polymers were fabricated through a nonreversible ring-opening reaction from polyamines and polyepoxides (PAEs). The epoxide groups reacted with both primary and secondary amines provided by the polyamines at different epoxide/amine ratios with polyethylene glycol as the solvent to form the porous materials. Fourier-transform infrared spectroscopy confirmed the occurrence of ring opening between the polyamines and polyepoxides. The porous structure of the materials was confirmed through N2 adsorption-desorption data and scanning electron microscopy images. The polymers were found to possess both crystalline and noncrystalline structures, as evidenced by X-ray diffraction and high-resolution transmission electron microscopy (HR-TEM) results. The HR-TEM images revealed a thin, sheet-like layered structure with ordered orientations, and the lattice fringe spacing measured from these images was consistent with the interlayer of the PAEs. Additionally, the selected area electron diffraction pattern indicated that the PAEs contained a hexagonal crystal structure. The Pd catalyst was fabricated in situ onto the PAEs support by the NaBH₄ reduction of the Au precursor, and the size of the nano-Pd was about 6.9 nm. The high nitrogen content of the polymer backbone combined with Pd noble nanometals resulted in excellent catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol.
Collapse
Affiliation(s)
- Ailing Li
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Hercigonja M, Milovanović B, Etinski M, Petković M. Decorated crown ethers as selective ion traps: Solvent’s role in crown’s preference towards a specific ion. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Tanriverdi AA, Yildiko U, Tekes AT, Cakmak İ, Ata AC. Synthesis, characterization and affinity detection of sulfonated polyimides: confirmation of proton transfer in quantum theory simulations. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Butnaru I, Constantin CP, Damaceanu MD. Optimization of triphenylamine-based polyimide structure towards molecular sensors for selective detection of heavy/transition metal ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Deng G, Luo J, Liu X, Hu T, Wang Y, Zong X, Xue S. Fabrication of analogous mixed matrix membranes via partially in-situ generation of rigid porous moieties without interfacial defects. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Extraction of Sr2+ from aqueous solutions using an asymmetric pulsed current-assisted electrochemical method. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Computational study for the electrophilic reactivity prediction of crown ethers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|