1
|
Aminzai MT, Yildirim M, Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024; 280:126790. [PMID: 39217711 DOI: 10.1016/j.talanta.2024.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metallic nanoparticles (MNPs) have attracted great interest among scientists and researchers for years due to their unique optical, physiochemical, biological, and magnetic properties. As a result, MNPs have been widely utilized across a variety of scientific fields, including biomedicine, agriculture, electronics, food, cosmetics, and the environment. In this regard, the current review article offers a comprehensive overview of recent studies on the synthesis of MNPs (metal and metal oxide nanoparticles), outlining the benefits and drawbacks of chemical, physical, and biological methods. However, the biological synthesis of MNPs is of great importance considering the biocompatibility and biological activity of certain MNPs. A variety of characterization techniques, including X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, scanning electron microscopy, dynamic light scattering, atomic force microscopy, Fourier transform infrared spectroscopy, and others, have been discussed in depth to gain deeper insights into the unique structural and spectroscopic properties of MNPs. Furthermore, their unique properties and applications in the fields of medicine, agriculture, and the environment are summarized and deeply discussed. Finally, the main challenges and limitations of MNPs synthesis and applications, as well as their future prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, 33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
2
|
Su Y, Yin X, Wei X, Xu R, Wei L, Chen Y, Ding L, Song D. A facile colorimetric sensor for ketoprofen detection in milk: Integrating molecularly imprinted polymers with Cu-doped Fe 3O 4 nanozymes. Food Chem 2024; 463:141207. [PMID: 39276544 DOI: 10.1016/j.foodchem.2024.141207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
A facile and efficient detection method is required to address the potential health risks of ketoprofen (KP) in animal-derived foods. Herein, we integrated molecularly imprinted polymers (MIPs) with Cu-doped Fe3O4 nanozymes (Fe3O4-Cu) to develop a selective colorimetric sensor for KP detection. Chitosan and glutaraldehyde were used as functional monomers and cross-linkers to fabricate proposed the MIPs@Fe3O4-Cu. On KP addition, it was specifically captured by the imprinted cavities, thereby blocking the channels between chromogenic substrates and Fe3O4-Cu. Based on this rationale, a selective colorimetric sensor utilizing MIPs@Fe3O4-Cu was established, exhibiting a linear range of 0.25-100 μM and a detection limit of 0.073 μM. The developed method was validated through its application in milk samples, yielding satisfactory recoveries with low relative standard deviations. This efficient and selective colorimetric sensor holds immense significance for KP detection in complex samples.
Collapse
Affiliation(s)
- Yu Su
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xinjie Yin
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xiaofeng Wei
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Rui Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Liwen Wei
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Lan Ding
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
3
|
Şenol ZM, El Messaoudi N, Ciğeroglu Z, Miyah Y, Arslanoğlu H, Bağlam N, Kazan-Kaya ES, Kaur P, Georgin J. Removal of food dyes using biological materials via adsorption: A review. Food Chem 2024; 450:139398. [PMID: 38677180 DOI: 10.1016/j.foodchem.2024.139398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
It is alarming that synthetic food dyes (FD) are widely used in various industries and that these facilities discharge their wastewater into the environment without treating it. FDs mixed into industrial wastewater pose a threat to the environment and human health. Therefore, removing FDs from wastewater is very important. This review explores the burgeoning field of FD removal from wastewater through adsorption using biological materials (BMs). By synthesizing a wealth of research findings, this comprehensive review elucidates the diverse array of BMs employed, ranging from algae and fungi to agricultural residues and microbial biomass. Furthermore, this review investigates challenges in practical applications, such as process optimization and scalability, offering insights into bridging the gap between laboratory successes and real-world implementations. Harnessing the remarkable adsorptive potential of BMs, this review presents a roadmap toward transformative solutions for FD removal, promising cleaner and safer production practices in the food and beverage industry.
Collapse
Affiliation(s)
- Zeynep Mine Şenol
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zeynep Ciğeroglu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak 64300, Turkey
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez/Meknes, Morocco
| | - Hasan Arslanoğlu
- Çanakkale Onsekiz Mart University, Engineering Faculty, Chemical Engineering, Çanakkale, Turkey
| | - Nurcan Bağlam
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey
| | - Emine Sena Kazan-Kaya
- Chemical Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Parminder Kaur
- Circular Economy Solutions (KTR), Geological Survey of Finland, 70210 Kuopio, Finland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
4
|
Inyinbor AA, Bankole DT, Solomon P, Ayeni TS, Lukman AF. The efficiency of Raphia hookeri adsorbent in indigo carmine dye removal: Economy depth via chemometrics. Heliyon 2024; 10:e32121. [PMID: 38933985 PMCID: PMC11200299 DOI: 10.1016/j.heliyon.2024.e32121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
The remediation of dye pollutants remains a concern in contemporary water management practices. Hence, the need for efficient and cost-effective techniques for dye removal from wastewater. In this study, the epicarp of Raphia hookeri fruits was treated with orthophosphoric acid for enhanced porosity and efficiency in the uptake of Indigo carmine dye (ICD). Treated Raphia hookeri fruit waste (RHPW) presented morphologically distributed pores as well as high porosity with Branneur-Emmet-Teller (BET) surface area of 945.43 m2/g. RHPW displayed functional groups suitable for adsorption. The maximum ICD uptake was observed at pH 5 while the maximum uptake (qmax) was 20.41 mg/g in the concentration range of 2-10 mg/L. Freundlich isotherm and Pseudo-second order kinetics well-described equilibrium and kinetics data respectively. This indicated a multilayered adsorption. The Dubinin-Radushkecich model energy value was 40.82 kJ/mol, indicating chemical adsorption. The ridge regression, the Lasso and the Elastic net statistical models were used to establish a positive relationship between the various adsorption operational parameters studied. Lasso provided the best result based on the estimated mean squared error. The RHPW-ICD adsorption system was more favorable at room temperature, as the removal efficiency decreased with temperature rise. The findings established Raphia hookeri fruit epicarp as an economical and sustainable precursor for the preparation of potent adsorbent for Indigo carmine dye removal. This can find possible application in wastewater treatment.
Collapse
Affiliation(s)
- Adejumoke A. Inyinbor
- Department of Physical Sciences, Landmark University, P.M.B 1001, Omu Aran, Nigeria
- Landmark University Clean Water and Sanitation Sustainable Development Goal, Landmark University, Omu Aran, Nigeria
| | - Deborah T. Bankole
- Department of Physical Sciences, Landmark University, P.M.B 1001, Omu Aran, Nigeria
- Landmark University Clean Water and Sanitation Sustainable Development Goal, Landmark University, Omu Aran, Nigeria
| | - Pamela Solomon
- Department of Physical Sciences, Landmark University, P.M.B 1001, Omu Aran, Nigeria
| | - Temitope S. Ayeni
- Department of Physical Sciences, Landmark University, P.M.B 1001, Omu Aran, Nigeria
| | - Adewale F. Lukman
- Department of Mathematics, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
5
|
Al-Sareji OJ, Meiczinger M, Salman JM, Al-Juboori RA, Hashim KS, Somogyi V, Jakab M. Ketoprofen and aspirin removal by laccase immobilized on date stones. CHEMOSPHERE 2023; 311:137133. [PMID: 36343736 DOI: 10.1016/j.chemosphere.2022.137133] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, enzymatic remediation/biocatalysis has gained prominence for the bioremediation of recalcitrant chemicals. Laccase is one of the commonly investigated enzymes for bioremediation applications. There is a growing interest in immobilizing this enzyme onto adsorbents for achieving high pollutant removal through simultaneous adsorption and biodegradation. Due to the influence of the biomolecule-support interface on laccase activity and stability, it is crucial to functionalize the solid carrier prior to immobilization. Date stone (PDS), as an eco-friendly, low-cost, and effective natural adsorbent, was utilized as a carrier for laccase (fungus Trametes versicolor). After activating PDS through chemical treatments, the surface area increased by thirty-six-fold, and carbonyl groups became more prominent. Batch experiments were carried out for ketoprofen and aspirin biodegradation in aqueous solutions. After six cycles, the laccase maintained 54% of its original activity confirmed by oxidation tests of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). In addition, the storage, pH, and thermal stability of immobilized laccase on functionalized date stone (LFPDS) were found to be superior to that of free laccase, demonstrating its potential for ongoing applications. In the aqueous batch mode, this immobilized laccase system was used to degrade 25 mg L-1 of ketoprofen and aspirin, resulting in almost complete removal within 4 h of treatment. This study reveals that agricultural wastes such as date stone can successfully be valorized through simple activation techniques, and the final product can be used as an adsorbent and substrate for immobilization enzyme. The high efficiency of the LFPDS in removing ketoprofen and aspirin highlights the potential of this technology for removing pharmaceuticals and merits its continued development.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Iraq; Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary.
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Jasim M Salman
- Department of Biology, College of Science, University of Babylon, Al-Hillah, Iraq
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates; Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Al-Hillah, Iraq
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Miklós Jakab
- Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary
| |
Collapse
|
6
|
Badran I, Al‐Ejli MO. Efficient Multi‐walled Carbon Nanotubes/Iron Oxide Nanocomposite for the Removal of the Drug Ketoprofen for Wastewater Treatment Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ismail Badran
- Department of Chemistry Faculty of Sciences An-Najah National University Nablus Palestine, P.O.Box: 7
| | - Maan Omar Al‐Ejli
- Department of Chemistry and Earth Sciences College of Arts and Sciences Qatar University P.O. Box 2713 Doha Qatar College of Arts and Sciences, Qatar University
| |
Collapse
|
7
|
Mao Y, Liu X, Liu Z, He Y, Bao Y, Niu L. Cotton fiber-anchored binary PANI and LDH composite for removal of ketoprofen in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Franco DSP, Georgin J, Netto MS, Foletto EL, Allasia D, Oliveira MLS, Pinto D, Dotto GL. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31085-31098. [PMID: 35000165 DOI: 10.1007/s11356-021-17846-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
In this work, buckwheat husks (Fagopyrum esculentum) were modified by acid treatment and posteriorly employed to remove the ketoprofen in batch adsorption. The characterization results indicated that a more irregular surface with new empty spaces was generated after acid treatment. The adsorptive process was favored at acidic pH = 3. The dosage of 0.85 g L-1 was fixed for the kinetic and isothermal tests, obtaining good removal and capacity indications. The kinetic studies were better represented by pseudo-second-order, obtaining an experimental capacity of 74.3 mg g-1 for 200 mg L-1 of ketoprofen. An increase in temperature negatively affected the adsorption isotherm curves, resulting in a maximum capacity of 194.1 mg g-1. Thermodynamic results confirmed the exothermic nature of the process with physical forces acting. The adsorbent presented high efficiency in treating a synthetic effluent containing different drugs and salts, 71.2%. Therefore, adsorbent development from buckwheat husks treated with a strong acid is an excellent alternative, given the good removal results and the low cost for its preparation.
Collapse
Affiliation(s)
- Dison S P Franco
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias Schadeck Netto
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson L Foletto
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Daniel Allasia
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Environmental Engineering, Universidad de la Costa, Barranquilla, Colombia
| | - Diana Pinto
- Department of Civil and Environmental Engineering, Universidad de la Costa, Barranquilla, Colombia
| | - Guilherme L Dotto
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
9
|
Skwierawska AM, Nowacka D, Nowicka P, Rosa S, Kozłowska-Tylingo K. Structural Adaptive, Self-Separating Material for Removing Ibuprofen from Waters and Sewage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7697. [PMID: 34947291 PMCID: PMC8709425 DOI: 10.3390/ma14247697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
β-Cyclodextrin nanosponge (β-CD-M) was used for the adsorption of ibuprofen (IBU) from water and sewage. The obtained material was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), Harkins and Jura t-Plot, zeta potential, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elementary analysis (EA). Batch adsorption experiments were employed to investigate the effects of the adsorbent dose, initial IBU concentration, contact time, electrolyte ions and humic acids, and sewage over adsorption efficiency. The experimental isotherms were show off using Langmuir, Freundlich, Hill, Halsey and Sips isotherm models and thermodynamic analysis. The fits of the results were estimated according to the Sips isotherm, with a maximum adsorption capacity of 86.21 mg g-1. The experimental kinetics were studied by pseudo-first-order, pseudo-second-order, Elovich, modified Freundlich, Weber Morris, Bangham's pore diffusion, and liquid film diffusion models. The performed experiments revealed that the adsorption process fits perfectly to the pseudo-second-order model. The Elovich and Freundlich models indicate chemisorption, and the kinetic adsorption model itself is complex. The data obtained throughout the study prove that this nanosponge (NS) is extremely stable, self-separating, and adjusting to the guest structure. It also represents a potential biodegradable adsorbent for the removal IBU from wastewaters.
Collapse
Affiliation(s)
- Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Paulina Nowicka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Sandra Rosa
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
10
|
Hifney AF, Zien-Elabdeen A, Adam MS, Gomaa M. Biosorption of ketoprofen and diclofenac by living cells of the green microalgae Chlorella sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69242-69252. [PMID: 34296415 DOI: 10.1007/s11356-021-15505-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
There is a growing interest for the removal of different pharmaceuticals from water owing to their toxicity to various organisms. The present study investigated the use of living cells of the green alga Chlorella sp. in the short-term adsorption of ketoprofen (KET) and diclofenac (DIF) from aqueous solutions. The bioremoval efficiency of both KET and DIF was highly dependent on various parameters such as time, pH, algal dosage, and drug concentration. The adsorption efficiencies of both KET and DIC were maximized at pH 6. The biosorption of KET was better described by pseudo-first-order kinetics, while DIC obeyed the pseudo-second-order model. The maximum adsorption capacities of KET and DIF were attained as 0.328 and 0.429 mg g-1, respectively. The equilibrium data of the investigated drugs showed a better fit to the Freundlich model than the Langmuir model. The Elovich and Temkin models indicated that the algal surface was heterogeneous with different binding energies, while the intraparticle diffusion model assumed a boundary layer effect. Additionally, the Dubinin-Radushkevich isotherm indicated that the adsorption process was predominantly physisorption. FT-IR analysis revealed that H-bonding and n-π interactions were prominent in the biosorption process of the investigated pharmaceuticals on the surface of microalgae. The results of the present study showed that microalgae living cells could be applied as an eco-friendly and cost-effective biosorbent for the removal of KET and DIF at low concentrations.
Collapse
Affiliation(s)
- Awatief F Hifney
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ayat Zien-Elabdeen
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Mahmoud S Adam
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Gomaa
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
11
|
Kerkhoff CM, Boit Martinello KD, Franco DS, Netto MS, Georgin J, Foletto EL, Piccilli DG, Silva LF, Dotto GL. Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117184] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
He L, Guo L, Li H, Wang J, Wang Y, Li X. Cu2MoS4-based magnetic composites as effective adsorbent and photocatalyst for removal of organic contaminants in water. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|