1
|
Wang Z, Guo T, Zhou Y, Zhang J, Zhang Z, Zhu J, Qian H, Liu H, Wu W, Zhang J. Synthesis, and Insecticidal Activities of Propargyloxy-Diphenyl Oxide-Sulfonamide Derivatives. Chem Biodivers 2024; 21:e202400206. [PMID: 38380820 DOI: 10.1002/cbdv.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Agricultural pests are the primary contributing factor to crop yield reduction, particularly in underdeveloped regions. Despite the significant efficacy of pesticides in pest control, their extensive use has led to the drug-fast of insecticide resistance. Developing of new environmentally friendly plant-based pesticides is an urgent necessity. In this study, a series of diaryl ether compounds containing propargyloxy and sulfonamide groups were designed. The synthesis of these 36 compounds primarily relied on nuclear magnetic resonance for structure determination, while single-crystal X-ray diffraction was employed for certain compounds. Meanwhile, the insecticidal activities against Mythimna separata were also assessed. Some of the compounds exhibited significantly enhanced activity, the LC50 value of the highest activity compound TD8 (0.231 mg/mL) demonstrating respective increases by 100-fold compared to the plant pesticide celangulin V (23.9 mg/mL), and a 5-fold increase with the positive control L-1 (1.261 mg/mL). The interaction between the target compound and the target, as well as the consistency of the target, were verified through symptomological analysis and molecular docking. The structure-activity relationships were also conducted. This study offered a novel trajectory for the advancement and formulation of future pesticides.
Collapse
Affiliation(s)
- Ziyu Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Tao Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Yu Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Jinyu Zhang
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Ziwei Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Jianjun Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Hao Qian
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Hongxiang Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Wenjun Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, P. R. China
| |
Collapse
|
2
|
Saini P, Gao W, Soliman A, Fatehi P. A new solvent-free pathway for inducing quaternized lignin-derived high molecular weight polymer. Int J Biol Macromol 2023; 252:126382. [PMID: 37595716 DOI: 10.1016/j.ijbiomac.2023.126382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In this work, kraft lignin (KL) was polymerized with vinylbenzyl chloride (VBC) in a molar ratio of 1.8:1 (KL: VBC) using sodium persulfate (Na2S2O8) as an initiator at pH 9-10 and temperature of 80-90 °C for 3 h to produce polymer kraft lignin-g-poly(4-vinylbenzyl chloride) KL-poly(VBC) 1. Then, the grafting reaction was conducted with two different imidazole-based monomers of different side-chain lengths (methyl and n-butyl), namely, 1-methylimidazole (MIM), 1-n-butylimidazole (BIM), which led to the formation of novel polymers, kraft lignin-g-poly(4-vinylbenzyl-1-methylimidazolium chloride) KL-poly(VBC-MIM) 2a and kraft lignin-g-poly(4-vinylbenzyl-1-n-butyl imidazolium chloride) KL-poly(VBC-BIM) 2b. The polymer 2a generated a larger molecular weight polymer with a higher charge density and solubility than polymer 2b since the n-butyl group would cause steric hindrance and weaker monomer to react with intermediate polymer 1 in the second stage. The contact angle analysis confirmed more hydrophilicity of polymer 2a, and elemental analysis confirmed the more successful polymerization of polymer 2a. Applying the generated polymers as flocculants for a kaolin suspension confirmed that polymer 2a had similar performance with commercial cationic polyacrylamide (CPAM) flocculants, even though polymer 2a had a smaller molecular weight. This polymerization offers a promising pathway for generating cationic polymers with excellent performance as a flocculant for suspensions.
Collapse
Affiliation(s)
- Preety Saini
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 3E1, Canada
| | - Weijue Gao
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 3E1, Canada
| | - Ahmed Soliman
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 3E1, Canada.
| |
Collapse
|
3
|
Sadjadi S, Yaghoubi S, Zhong X, Yuan P, Heravi MM. Tuning the acidity of halloysite by polyionic liquid to develop an efficient catalyst for the conversion of fructose to 5-hydroxymethylfurfural. Sci Rep 2023; 13:7663. [PMID: 37169952 PMCID: PMC10175272 DOI: 10.1038/s41598-023-34876-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
In an attempt to prepare a low-cost and efficient acidic heterogeneous catalyst for the conversion of fructose to 5-hydroxymethylfurfural under mild reaction conditions, the acidity of halloysite was improved by covalent grafting of an acidic polyionic liquid. More precisely, halloysite was first vinyl functionalized and then polymerized with vinyl imidazole and 2-acrylamido-2-methylpropanesulfonic acid. The tangling imidazole rings were further converted to acidic ionic liquids by treating them with chlorosulfuric acid. UV-Vis spectroscopy and Hammett equation confirmed that conjugation of acid polyionic liquid resulted in the increase of the acidity of halloysite. Investigation of the efficiency of the catalyst for the synthesis of 5-hydroxymethylfurfural and optimization of reaction variables showed that 5-hydroxymethylfurfural was yielded in 97.8% after 30 min under the optimum conditions, i.e. catalyst loading of 20 wt% at 70 °C. Notably, the catalyst was highly reusable and it could be reused for at least seven reaction runs with insignificant loss of its activity. Furthermore, this catalyst could also promote the conversion of sucrose and maltose to give moderate yields of 5-hydroxymethylfurfural.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran , Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Soheila Yaghoubi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Xuemin Zhong
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Majid M Heravi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran.
| |
Collapse
|
4
|
Damodaran K. Recent advances in NMR spectroscopy of ionic liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:1-27. [PMID: 35292132 DOI: 10.1016/j.pnmrs.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This review presents recent developments in the application of NMR spectroscopic techniques in the study of ionic liquids. NMR has been the primary tool not only for the structural characterization of ionic liquids, but also for the study of dynamics. The presence of a host of NMR active nuclei in ionic liquids permits widespread use of multinuclear NMR experiments. Chemical shifts and multinuclear coupling constants are used routinely for the structure elucidation of ionic liquids and of products formed by their covalent interactions with other materials. Also, the availability of a multitude of NMR techniques has facilitated the study of dynamical processes in them. These include the use of NOESY to study inter-ionic interactions, pulsed-field gradient techniques for probing transport properties, and relaxation measurements to elucidate rotational dynamics. This review will focus on the application of each of these techniques to investigate ionic liquids.
Collapse
Affiliation(s)
- Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|