1
|
Yao C, Wu H, Li X, Chen Q, Zhang W, Yu G, Liu H, Miao Y, Wu W. Molecular insights into dicationic versus monocationic ionic liquids as a high hydrophobic alternative for the separation of phenol from waters. ENVIRONMENTAL RESEARCH 2024; 248:118420. [PMID: 38316384 DOI: 10.1016/j.envres.2024.118420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The hydrophobic nature of an extractant is particularly critical in the treatment of wastewater. Considering that dicationic ionic liquids (DILs) are likely to be more hydrophobic, a comparative study of the separation of phenol from waters using [NTf2]- based monocationic ionic liquids (MILs) and DILs is carried out both from experimental and theoretical analysis perspectives. Experimental results revealed that DILs exhibited superior extraction ability compared to MILs, with extraction efficiencies of 93.7% and 97.4% using [BMIM][NTf2] and [C6(MIM)2][NTf2]2 as extractants, respectively. The microscopic examination through theoretical calculations elucidated the higher hydrophobicity and extraction efficiency of DILs over MILs. The results indicated that the DIL showed stronger hydrophobicity than the MIL because the hydrogen bond strength between the DIL and water was lower than that of the MIL. Although the hydrogen bond strength between the DIL and phenol was lower than that of the MIL, the stronger van der Waals forces existed between DIL and phenol, so DIL was more efficient in extracting phenol. In addition, the experimental parameters were optimized to provide basic data for application, such as mass ratio of ILs to water, extraction time and temperature, pH, and initial phenol content. Finally, the DILs were recovered using rotary evaporation apparatus, and the results demonstrated that DILs had good recovery and reuse performance. In brief, this work could provide an effective method for the treatment of phenol-containing wastewater. And the revelation of molecular mechanism is expected to positively impact the design of high-performance task-specific ILs.
Collapse
Affiliation(s)
- Congfei Yao
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Haisong Wu
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyu Li
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qiuyu Chen
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wanxiang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Hongqi Liu
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Weize Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Alobaidi DS, Alwared AI. Role of immobilised Chlorophyta algae in form of calcium alginate beads for the removal of phenol: isotherm, kinetic and thermodynamic study. Heliyon 2023; 9:e14851. [PMID: 37025864 PMCID: PMC10070660 DOI: 10.1016/j.heliyon.2023.e14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, sodium alginate-immobilised Chlorophyta algae were evaluated for phenol uptake. The algae/alginate bead (AAB) characteristics were analysed by means of BET-BJH, FTIR, and SEM-EDX methods, while the adsorption performance of AABs with respect to phenol removal was investigated using batch studies. The parameters found to affect the biosorption capacity of AABs included pH, contact time, initial phenol concentration, adsorbent dosage, stirring rate, particle size, and temperature, with the optimal operating variables identified as a pH of 6, an initial phenol concentration of 50 mg/L, AAB dosage of 5 g/L, and a 200 rpm stirring rate. The adsorption process in such cases reached equilibrium within 120 min, demonstrating a maximum phenol elimination capacity of 9.56 mg/g at 30 °C. The isotherm and kinetic models used to determine this were evaluated using the Chi-square test (X2), the coefficient of determination (R2), and the value of equilibrium capacity, with results that revealed that the Freundlich isotherm provides the best fit for the relevant equilibrium data, as shown by its high R2 value (0.96) and low X2 value (1.16135); the theoretical data produced by that model were thus closer to the experimental data than that from the Langmuir model. Kinetic analysis showed that the phenol adsorption followed a pseudo-second-order kinetic model. The thermodynamic parameters were thus explored, revealing that the phenol biosorption process is based on spontaneous physisorption with an exothermic reaction due to negative (ΔG°) and (ΔH°) values. The low cost, natural origin, biodegradability, and eco-friendliness of algae/alginate bead sorbents also make them ideally suited for phenol removal in aqueous solutions.
Collapse
|
3
|
Ullah S, Ali Z, Khan AS, Nasrullah A, Javed F, Adalat B, Sher N, Ahmed M, Alshgari RA, Saleh Mushab MS, Majeed S. Hydrophobic ammonium based ionic liquids for efficient extraction of textile dyes from aqueous media: Extraction study and antibacterial evaluation. CHEMOSPHERE 2023; 321:138008. [PMID: 36731664 DOI: 10.1016/j.chemosphere.2023.138008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Alizarin red S (ARS) extraction from aqueous medium was carried out using hydrophobic ionic liquids (ILs) containing trioctylammonium cation paired with 4-tert-butylbenzoate ([TOA][Butbenz] (IL1), 4-phenylbutanoate ([TOA][PheBut] (IL2), 3-4-dimethylbenzoate ([TOA][DMbenz] (IL3), naphthoate, ([TOA][Naph]) (IL4), salicylate ([TOA][Sali]) (IL5) and nonanedioate ([TOA]2[Nona]) (IL6). The findings demonstrated that all of the tested ILs were efficient for extracting ARS, however, [TOA]2[Nona] was more effective than others. For the extraction of ARS from the aqueous phase, the effects of various parameters including the initial pH of the dye solution, contact time, ILs to dye volume ratio (VIL:VW), dye concentration, temperature, and salt effect were investigated. The spontaneity of the liquid-liquid extraction of ARS from the aqueous phase to the IL phase was confirmed by thermodynamic parameters. More than 90% of the ARS was extracted from the aqueous phase to the IL phase throughout all experiments. Interaction of selected IL with dyes were confirmed using FTIR analysis. The standard bacterial strains of Escherichia coli (E. coli) ATCC BAA-2471 (gram negative) and Methicillin-resistant Staphylococcus (MRSA) ATCC 43300 (gram positive) were used for evaluating antibacterial activity. The lower dose (250 ppm), the ILs1, 2, 3, 4, 5, and 6 inhibited 0.40, 1.50, 6.50, 1.50, 2.50, and 0.50 mm growth of E. coli, and 4.0, 2.0, 16.50, 0.40, 5.0, and 3.50 mm growth of MRSA, respectively. The experimental findings confirmed that the present ILs can be utilized as an effective solvent for ARS and other dyes extraction from aqueous media.
Collapse
Affiliation(s)
- Saadat Ullah
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Zarshad Ali
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology Bannu 28100, Khyber Pakhtunkhwa, Pakistan.
| | - Asma Nasrullah
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Bushra Adalat
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Naila Sher
- Department of Biotechnology, University of Science and Technology Bannu-28100, Khyber Pakhtunkhwa, Pakistan
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology Bannu-28100, Khyber Pakhtunkhwa, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Razan A Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
4
|
Khan AS, Sakina, Nasrullah A, Ullah S, Ullah Z, Khan Z, Khan NA, Khan SZ, Din IU. An Overview on Phytotoxic Perspective of Ionic Liquids and Deep Eutectic Solvents: The Role of Chemical Structure in the Phytotoxicity. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Amir Sada Khan
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Sakina
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Asma Nasrullah
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
- Shaheed Benazir Bhutto Women University Department of Chemistry 25000 Peshawar Khyber Pakhtunkhwa Pakistan
| | - Saadat Ullah
- Hazara University Department of Chemistry Mansehra Khyber Pakhtunkhwa Pakistan
| | - Zahoor Ullah
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Department of Chemistry Takatu Campus 87100 Quetta Pakistan
| | - Zahid Khan
- American University of Sharjah Department of Civil Engineering, College of Engineering P.O. Box 26666 Sharjah United Arab Emirates
| | - Naveed Ahmed Khan
- University of Sharjah Department of Clinical Sciences, College of Medicine University City 27272 Sharjah Unites Arab Emirates
- Istinye University Istinye Faculty of Medicine 34396 Istanbul Turkey
| | - Shahan Zeb Khan
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Israf Ud Din
- Prince Sattam Bin Abdulaziz University Department of Chemistry, College of Science and Humanities P.O. Box 173 Al-Kharj Saudi Arabia
| |
Collapse
|
5
|
Du H, Tian G. The effect of alkyl chain length on imidazole chloroaluminate ionic liquid/Pt(111) interface and aluminum deposition: A DFT-D3 study. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Tian J, Tang Q, Zhang Y, Shu Y, Zhang L, Zheng W. A study on the viscosity, density, and derivative properties of 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides with benzo-15-crown-5 binary mixtures. JOURNAL OF CHEMICAL RESEARCH 2023. [DOI: 10.1177/17475198231156358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The essential factors that affect the interfacial mass transfer rate of crown ether–ionic liquid systems are studied by examining the physicochemical properties of mixtures of ionic liquids with benzo-15-crown-5. In the present work, the 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides ionic liquids ([C2MIm][NTf2], [C3MIm][NTf2], [C4MIm][NTf2], and [C5MIm][NTf2]) are adopted as the solvent and benzo-15-crown-5 is used as the solute. A series of binary mixtures of the ionic liquid and benzo-15-crown-5, with different molar fractions of ionic liquids, is formulated by the weight method. The viscosity and density are determined for four binary mixtures of ionic liquid and benzo-15-crown-5 at atmospheric pressure in a temperature range of 298.15 to 343.15 K. The values obtained for viscosity and density are fitted with empirical equations, and the energy barrier, a-constant, and the isobaric thermal expansion coefficient are all calculated. Interactions between the ionic liquid and the solute benzo-15-crown-5 are analyzed, and the above properties are discussed by comparison with systems in which different solutes are present in the same ionic liquid. It is found that interactions between the ionic liquid and benzo-15-crown-5 in the mixtures are more intense than in mixed systems composed of ionic liquids and other solutes.
Collapse
Affiliation(s)
- Ju Tian
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, China
| | - Qi Tang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, China
| | - Yongshen Zhang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, China
| | - Yuzhen Shu
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, China
| | - Lihua Zhang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, China
| | - Weiming Zheng
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, China
| |
Collapse
|
7
|
Wei B, Wu Y, Liu F, Su M, Liang H. One-pot simultaneous extraction and enzymatic hydrolysis to prepare glycyrrhetinic acid via ionic liquid-based two-phase systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Moghazy MA. High‐Efficiency Adsorptive Removal of Phenol from Aqueous Solution Using Natural Red Clay and ZnO Nanoparticles. ChemistrySelect 2022. [DOI: 10.1002/slct.202104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marwa A. Moghazy
- Environmental Applications of Nanomaterials Lab. Department of Chemistry Faculty of Science Aswan University 81528 Assuan Egypt
| |
Collapse
|
9
|
Guo C, Zhou H. Multiscale analysis and techno-economic comparison between ionic liquids and organic solvent process for cleaner separation of cresol isomers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Application of protic ammonium-based ionic liquids with carboxylate anions for phenol extraction from aqueous solution and their cytotoxicity on human cells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Khan AS, Ibrahim TH, Jabbar NA, Khamis MI, Nancarrow P, Mjalli FS. Ionic liquids and deep eutectic solvents for the recovery of phenolic compounds: effect of ionic liquids structure and process parameters. RSC Adv 2021; 11:12398-12422. [PMID: 35423754 PMCID: PMC8697206 DOI: 10.1039/d0ra10560k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
Water pollution is a severe and challenging issue threatening the sustainable development of human civilization. Besides other pollutants, waste fluid streams contain phenolic compounds. These have an adverse effect on the human health and marine ecosystem due to their toxic, mutagenic, and carcinogenic nature. Therefore, it is necessary to remove such phenolic pollutants from waste stream fluids prior to discharging to the environment. Different methods have been proposed to remove phenolic compounds from wastewater, including extraction using ionic liquids (ILs) and deep eutectic solvent (DES), a class of organic salts having melting point below 100 °C and tunable physicochemical properties. The purpose of this review is to present the progress in utilizing ILs and DES for phenolic compound extraction from waste fluid streams. The effects of IL structural characteristics, such as anion type, cation type, alkyl chain length, and functional groups will be discussed. In addition, the impact of key process parameters such as pH, phenol concentration, phase ratio, and temperature will be also described. More importantly, several ideas for addressing the limitations of the treatment process and improving its efficiency and industrial viability will be presented. These ideas may form the basis for future studies on developing more effective IL-based processes for treating wastewaters contaminated with phenolic pollutants, to address a growing worldwide environmental problem.
Collapse
Affiliation(s)
- Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates .,Department of Chemistry, University of Science & Technolgy Banuu-28100 Khyber Pakhthunkhwa Pakistan
| | - Taleb H Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Nabil Abdel Jabbar
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Mustafa I Khamis
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Paul Nancarrow
- Department of Chemical Engineering, College of Engineering, American University of Sharjah P.O. Box 26666 Sharjah United Arab Emirates
| | - Farouq Sabri Mjalli
- Petroleum & Chemical Engineering Department, Sultan Qaboos University Muscat 123 Oman
| |
Collapse
|