1
|
Seliem AF, Mohammed AYA, Attia A, Aman S, Ahmad N, Ibrahim MM. ZIF-67 MOF-Derived Mn 3O 4 @ N-Doped C as a Supercapacitor Electrode in Different Alkaline Media. ACS OMEGA 2024; 9:17563-17576. [PMID: 38645369 PMCID: PMC11025101 DOI: 10.1021/acsomega.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Transition-metal oxide has been identified as an auspicious material for supercapacitors due to its exceptional capacity. The inadequate electrochemical characteristics, such as prolonged cycle stability, can be ascribed to factors, such as low electrical conductivity, sluggish reaction kinetics, and a deficiency of active sites. The transition-metal oxides derived from the MOF materials offer a larger surface area with enriched active sites and a faster reaction rate along with good electrical conductivity. The manganese (Mn)-based metal-organic framework (MOF)-derived materials were produced using the pyrolysis method. Zeolitic imidazolate frameworks (ZIF-67) were fabricated in water at ambient temperature with the aid of triethylamine. Multiple techniques were used to examine the characteristics of the fabricated electrode materials. The influence of the electrolyte on the electrochemical activity of the Mn3O4@N-doped C electrode materials was determined in KOH, NaOH, and LiOH. For manufacturing of "Mn3O4@N-doped C", ZIF-67 was used as a precursor. The capacitive performance of the Mn3O4@N-doped C electrode increased as a result of nitrogen-doped carbon; after 5000th cycles, the electrode retained an excellent rate capability and a high specific capacitance (Cs) of 980 F g-1 at 1 A g-1 under 2.0 KOH electrolyte in a three electrode system. The carbonized manganese oxide displays also had a high Cs of 686 F g-1 in two electrode systems in 2.0 M KOH. Materials made from MOFs show promise as capacitive materials for applications in energy conversion storage owing to their straightforward synthesis and strong electrochemical performance.
Collapse
Affiliation(s)
- Amal F. Seliem
- Department
of Chemistry, Faculty of Science and Arts, Najran University, Najran 61441, Saudi Arabia
| | - Ayeda Y. A. Mohammed
- Department
of Chemistry, Faculty of Science and Arts, Najran University, Najran 61441, Saudi Arabia
| | - A. Attia
- Department
of Chemistry, Faculty of Science and Arts, Najran University, Najran 61441, Saudi Arabia
| | - Salma Aman
- Institute
of Physics, Khwaja Fareed University of
Engineering and Information Technology, Abu Dhabi Road, Rahim Yar
Khan 64200, Pakistan
| | - Naseeb Ahmad
- Institute
of Physics, Khwaja Fareed University of
Engineering and Information Technology, Abu Dhabi Road, Rahim Yar
Khan 64200, Pakistan
| | - Mohamed M. Ibrahim
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Shamloo A, Naseri T, Rahbary A, Bakhtiari MA, Ebrahimi S, Mirafzal I. In-silico study of drug delivery to atherosclerosis in the human carotid artery using metal-organic frameworks based on adhesion of nanocarriers. Sci Rep 2023; 13:21481. [PMID: 38057414 PMCID: PMC10700345 DOI: 10.1038/s41598-023-48803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
This study investigates nanocarriers (NCs) for drug delivery targeting carotid artery atherosclerosis. This targeted drug delivery mechanism is based on ligand-receptor bindings facilitated by coating NCs with P-selectin aptamers, which exhibit high affinities for P-selectin plaque receptors. Recognizing the significant advantages of metal-organic frameworks (MOFs), such as their high drug-loading percentages, we chose them as nanocarriers for this research. Our evaluation considers critical factors: NC surface density (the number of attached nanocarriers per unit of plaque area), toxicity (percentage of NCs missing the target), and efficient drug transfer to plaque tissue. Employing molecular dynamics (MD) for drug loading calculations via van der Waals interactions and computational fluid dynamics (CFD) for toxicity, surface density, and drug transfer assessments, we achieve a comprehensive analysis. A cardiac cycle-based metric guides optimal MOF release conditions, establishing an ideal dosage of 600 NCs per cycle. MOF-801 exhibits outstanding drug delivery performance, particularly in plaque targeting. While a magnetic field enhances NC adhesion, its impact on drug transfer is limited, emphasizing the need for further optimization in magnetic targeting for NC-based therapies. This study provides crucial insights into NC drug delivery performance in carotid artery atherosclerosis, advancing the field of targeted drug delivery for atherosclerosis treatment.
Collapse
Affiliation(s)
- Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Tahoora Naseri
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Ali Rahbary
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Mohammad Ali Bakhtiari
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Iman Mirafzal
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Agurokpon D, Louis H, Benjamin I, Godfrey OC, Ghotekar S, Adeyinka AS. Impact of Polythiophene ((C 4H 4S) n; n = 3, 5, 7, 9) Units on the Adsorption, Reactivity, and Photodegradation Mechanism of Tetracycline by Ti-Doped Graphene/Boron Nitride (Ti@GP_BN) Nanocomposite Materials: Insights from Computational Study. ACS OMEGA 2023; 8:42340-42355. [PMID: 38024685 PMCID: PMC10652268 DOI: 10.1021/acsomega.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
This study addresses the formidable persistence of tetracycline (TC) in the environment and its adverse impact on soil, water, and microbial ecosystems. To combat this issue, an innovative approach by varying polythiophene ((C4H4S)n; n = 3, 5, 7, 9) units and the subsequent interaction with Ti-doped graphene/boron nitride (Ti@GP_BN) nanocomposites was applied as catalysts for investigating the molecular structure, adsorption, excitation analysis, and photodegradation mechanism of tetracycline within the framework of density functional theory (DFT) at the B3LYP-gd3bj/def2svp method. This study reveals a compelling correlation between the adsorption potential of the nanocomposites and their corresponding excitation behaviors, particularly notable in the fifth and seventh units of the polythiophene configuration. These units exhibit distinct excitation patterns, characterized by energy levels of 1.3406 and 924.81 nm wavelengths for the fifth unit and 1.3391 and 925.88 nm wavelengths for the seventh unit. Through exploring deeper, the examination of the exciton binding energy emerges as a pivotal factor, bolstering the outcomes derived from both UV-vis transition analysis and adsorption exploration. Notably, the calculated exciton binding energies of 0.120 and 0.103 eV for polythiophene units containing 5 and 7 segments, respectively, provide compelling confirmation of our findings. This convergence of data reinforces the integrity of our earlier analyses, enhancing our understanding of the intricate electronic and energetic interplay within these intricate systems. This study sheds light on the promising potential of the polythiophene/Ti-doped graphene/boron nitride nanocomposite as an efficient candidate for TC photodegradation, contributing to the advancement of sustainable environmental remediation strategies. This study was conducted theoretically; hence, experimental studies are needed to authenticate the use of the studied nanocomposites for degrading TC.
Collapse
Affiliation(s)
- Daniel
C. Agurokpon
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, Calabar 540221, Nigeria
- Centre for
Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital
and Research Institute, Chettinad Academy
of Research and Education, Kelambakkam 603103, Tamil Nadu India
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Obinna C. Godfrey
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Biochemistry, University of Calabar, Calabar 540221, Nigeria
| | - Suresh Ghotekar
- Department
of Chemistry, Smt. Devkiba Mohansinhji, Chauhan College of Commerce
and Science, University of Mumbai, Silvassa 396, India
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Auckland Park 2006, South-Africa
| |
Collapse
|
4
|
Xu J, Li Y, Yu L, Pang Y, Shen X, Liu J. Metal-organic frameworks modified melamine foam in pipette-tip for rapid solid-phase extraction of organophosphorus pesticides in fruits and vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108774-108782. [PMID: 37755595 DOI: 10.1007/s11356-023-30055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
In this work, metal-organic frameworks (MOFs) including Fe-MIL-101 and Ti-MIL-125 were prepared and fixed on the melamine foam (MF) by polyvinylidene fluoride (PVDF) to prepare MF/PVDF/MOFs, which was used as adsorbents in pipette-tip solid-phase extraction (PT-SPE) for rapid extraction of organophosphorus pesticides (OPPs). Then, a gas chromatograph-flame thermionic detector (GC-FTD) was used for simultaneous analysis of Dimethoate (DMT), Iprobenfos (IBF), Parathion-methyl (PAM), and Chlorpyrifos (CPF). The morphology, crystal structure, and functional groups of MF/PVDF/MOFs were characterized, indicating that Ti-MIL-125 and Fe-MIL-101 were successfully synthesized and distributed on MF. The Fe-MIL-101 and Ti-MIL-125 showed good extraction ability for OPPs, which was mainly due to the π-π interaction and the multiple porous structures. Under the optimal conditions, the limit of detection (LODs) of four OPPs was 0.03-0.14 μg L-1 and the RSDs were less than 9.9%. The developed PT-SPE method showed a short extraction time (<3 min). The recoveries in fruits and vegetables (Celery, cabbages, and oranges) ranged from 75.3%-118.8% (RSDs<9.6%). The prepared MF/PVDF/MOFs demonstrated the efficient extraction performance of OPPs, contributing to the rapid pretreatment of OPPs from food and the environment.
Collapse
Affiliation(s)
- Jinjie Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Yongli Li
- Technology Center of Chengdu Customs, Chengdu, 610041, China
| | - Lihong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
| | - Jun Liu
- Technology Center of Chengdu Customs, Chengdu, 610041, China
| |
Collapse
|
5
|
Zhan X, Gao K, Jia Y, Deng W, Liu N, Guo X, Li H, Li J. Enhanced Desulfurization Performance of ZIF-8/PEG MMMs: Effect of ZIF-8 Particle Size. MEMBRANES 2023; 13:membranes13050515. [PMID: 37233576 DOI: 10.3390/membranes13050515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Constructing efficient and continuous transport pathways in membranes is a promising and challenging way to achieve the desired performance in the pervaporation process. The incorporation of various metal-organic frameworks (MOFs) into polymer membranes provided selective and fast transport channels and enhanced the separation performance of polymeric membranes. Particle size and surface properties are strongly related to the random distribution and possible agglomeration of MOFs particles, which may lead to poor connectivity between adjacent MOFs-based nanoparticles and result in low-efficiency molecular transport in the membrane. In this work, ZIF-8 particles with different particle sizes were physically filled into PEG to fabricate mixed matrix membranes (MMMs) for desulfurization via pervaporation. The micro-structures and physi-/chemical properties of different ZIF-8 particles, along with their corresponding MMMs, were systematically characterized by SEM, FT-IR, XRD, BET, etc. It was found that ZIF-8 with different particle sizes showed similar crystalline structures and surface areas, while larger ZIF-8 particles possessed more micro-pores and fewer meso-/macro-pores than did the smaller particles. ZIF-8 showed preferential adsorption for thiophene rather than n-heptane molecules, and the diffusion coefficient of thiophene was larger than that of thiophene in ZIF-8, based on molecular simulation. PEG MMMs with larger ZIF-8 particles showed a higher sulfur enrichment factor, but a lower permeation flux than that found with smaller particles. This might be ascribed to the fact that larger ZIF-8 particles provided more and longer selective transport channels in one single particle. Moreover, the number of ZIF-8-L particles in MMMs was smaller than the number of smaller ones with the same particle loading, which might weaken the connectivity between adjacent ZIF-8-L nanoparticles and result in low-efficiency molecular transport in the membrane. Moreover, the surface area available for mass transport was smaller for MMMs with ZIF-8-L particles due to the smaller specific surface area of the ZIF-8-L particles, which might also result in lower permeability in ZIF-8-L/PEG MMMs. The ZIF-8-L/PEG MMMs exhibited enhanced pervaporation performance, with a sulfur enrichment factor of 22.5 and a permeation flux of 183.2 g/(m-2·h-1), increasing by 57% and 389% compared with the results for pure PEG membrane, respectively. The effects of ZIF-8 loading, feed temperature, and concentration on desulfurization performance were also studied. This work might provide some new insights into the effect of particle size on desulfurization performance and the transport mechanism in MMMs.
Collapse
Affiliation(s)
- Xia Zhan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Kaixiang Gao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yucheng Jia
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wen Deng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Ning Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebin Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiding Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Lv YC, Esmaeili Shahri E, Mahmoudi A, Keifi Naughabi R, Abbaspour S, Tayebee R. Bioinspired nickel oxide nanoparticle as an efficient nanocarrier in the delivery of doxorubicin as an anti-bladder cancer drug. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Gholami A, Shakerzadeh E, Chigo Anota E. Exploring the potential use of pristine and metal-encapsulated B36N36 fullerenes in delivery of β-lapachone anticancer drug: DFT approach. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Khamis Mahal R, Mohammrd Naser S, Abdulwahid Abdulhussain M, Taha A, Hachim SK, Abdullaha SA, Kadhim MM, Mahdi Rheima A, Zedan Taban T. First-principles studies on two-dimensional aluminum carbide as potential nanocarriers for drug delivery systems. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Hu H, Su M, Ba H, Chen G, Luo J, Liu F, Liao X, Cao Z, Zeng J, Lu H, Xiong G, Chen J. ZIF-8 nanoparticles induce neurobehavioral disorders through the regulation of ROS-mediated oxidative stress in zebrafish embryos. CHEMOSPHERE 2022; 305:135453. [PMID: 35752317 DOI: 10.1016/j.chemosphere.2022.135453] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Zeolite imidazolate framework-8 (ZIF-8) is a nanomaterial of metal-organic frameworks (MOFs), which have various applications in drug delivery and water pollution remediation. However, little is known about its developmental neurotoxicity in aquatic organisms, especially on the low-level exposure. In the present study, we investigated the toxic effects of ZIF-8 NPs on the neuron development, behavioral traits, oxidative stress and gene expression in zebrafish embryos. Firstly, our results showed that ZIF-8 induced significantly embryonic malformations and abnormal development of nervous system in zebrafish embryos with a concentration-dependent manner. Meanwhile, the locomotor behavior was obviously inhibited while the anxiety behavior was greatly increased after ZIF-8 exposure. Secondly, the levels of ROS and antioxidant enzyme activities (CAT, SOD and MDA) together with AChE and ATPase were substantially increased in the ZIF-8 exposed groups. At the molecular level, ZIF-8 NPs could down-regulate the expression profiles of neural development-related genes (gap43, synapsin 2a and neurogenin 1) and PD-like related genes (dj-1, dynactin and parkin), but up-regulate the expression levels of neuro-inflammatory genes (nox-1, glip1a and glip1b) in larval zebrafish. In addition, we further explored the molecular mechanism of neurotoxicity induced by ZIF-8 with pharmacological experiments. The results showed that specific inhibition of ROS-mediated oxidative stress by the astaxanthin could reverse the expression patterns of ATPase, AChE and neurodevelopmental genes. Moreover, astaxanthin can partially rescue the ZIF-8-modulated locomotor behavior. Taken together, our results demonstrated that ZIF-8 had the potential to cause neurotoxicity in zebrafish embryos. These informations presented in this study will help to elucidate the molecular mechanisms of ZIF-8 nanoparticles exposure in zebrafish, which providing a scientific evaluation of its safety to aquatic ecosystems.
Collapse
Affiliation(s)
- Hongmei Hu
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Meile Su
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Huixia Ba
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Guilan Chen
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Jiaqi Luo
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Fasheng Liu
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Junquan Zeng
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Guanghua Xiong
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China.
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| |
Collapse
|
10
|
Shakerzadeh E, Zborowski KK, Chigo Anota E, Nguyen MT. Pristine and alkali and alkaline earth metals encapsulated B
36
N
36
nanoclusters as prospective delivery agents and detectors for 5‐fluorouracil anticancer drug. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ehsan Shakerzadeh
- Chemistry Department, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Krzysztof K. Zborowski
- Department of General Chemistry, Faculty of Chemistry Jagiellonian University Kraków Poland
| | - Ernesto Chigo Anota
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Ciudad Universitaria, San Manuel Puebla México
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST) Ho Chi Minh City Vietnam
| |
Collapse
|
11
|
Balali E, Davatgaran S, Sheikhi M, Shahab S, Kaviani S. Adsorption of doxepin drug on the surface of B12N12 and Al12N12 nanoclusters: DFT and TD-DFT perspectives. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The adsorption of Doxepin (DOX) drug on the surfaces of B12N12 and Al12N12 nanoclusters was studied by using DFT and TD-DFT calculations at the B3PW91 method and 6–31 + G* basis set in the solvent (water). The adsorption effect of the DOX drug on the bond lengths, electronic properties, and dipole moment of the B12N12 and Al12N12 nanoclusters was studied. The change in λmax was assessed by an investigation of calculated UV spectra. NBO analysis displayed a charge transfer between DOX and two nanoclusters. The LOL and ELF values of the B–N bond are the greater than B–O, Al–O, and Al–N bonds, confirming stronger interaction between the boron atom of B12N12 nanocluster and the nitrogen atom of the DOX drug. It is found that the B12N12 nanocluster can be suitable as a drug carrier system for the delivery of DOX drug. The results of our study can be used to design a suitable carrier for the DOX drug.
Collapse
Affiliation(s)
- Ebrahim Balali
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sanaz Davatgaran
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Siyamak Shahab
- Belarusian State University, ISEI BSU, Minsk, Republic of Belarus
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk
| | - Sadegh Kaviani
- Department of Chemistry, Research Center for Modeling and Computational Sciences, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214262] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Sun X, Keywanlu M, Tayebee R. Experimental and molecular dynamics simulation study on the delivery of some common drugs by ZIF‐67, ZIF‐90, and ZIF‐8 zeolitic imidazolate frameworks. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaodong Sun
- Department of Hepatobiliary Surgery The Third Hospital of Jinan Jinan China
| | - Maryam Keywanlu
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| |
Collapse
|