1
|
Cardoso Gomes G, Ferdeghini C, Guglielmero L, D'Andrea F, Guazzelli L, Mezzetta A, Pomelli CS. A Combined Experimental/Computational Study of Dicationic Ionic Liquids with Bromide and Tungstate Anions. Molecules 2024; 29:2131. [PMID: 38731623 PMCID: PMC11326805 DOI: 10.3390/molecules29092131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
A panel of dicationic ionic liquids (DILs) with different rigid xylyl (ortho, meta, para) spacers and different anions (bromide and tungstate) has been synthetised and characterised through different experimental and computational techniques. Differences and analogies between the systems are analysed using information derived from their DFT structures, semiempirical dynamics, thermal behaviour, and catalytic properties versus the well-known reaction of CO2 added to epichlorohydrin. A comparison between the proposed systems and some analogues that present non-rigid spacers shows the key effect displayed by structure rigidity on their characteristics. The results show an interesting correlation between structure, flexibility, properties, and catalytic activity.
Collapse
Affiliation(s)
| | - Claudio Ferdeghini
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Luca Guglielmero
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Felicia D'Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | |
Collapse
|
2
|
Abeysooriya S, Lee M, Hwan Kim S, O'Dell LA, Pringle JM. Development of New Plastic-Crystal Based Electrolytes using Pyrrolidinium- Bis(fluorosulfonyl)imide Dicationic Salts. CHEMSUSCHEM 2023; 16:e202202249. [PMID: 36932047 DOI: 10.1002/cssc.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Dicationic organic salts are an interesting class of solid-state electrolyte materials due to their unique structure. Here we present, for the first time, the synthesis and characterization of three dicationic-FSI salts, 1,2-bis(N-methylpyrrolidinium)ethane bi(bis(fluorosulfonyl)imide) ([C2 -Pyrr1][FSI]2 ), 1,2-bis(N-ethylpyrrolidinium)ethane bi(bis(fluorosulfonyl)imide) ([C2 -Pyrr2][FSI]2 ) and 1,2-bis(N-n-propylpyrrolidinium)ethane bi(bis(fluorosulfonyl)imide) ([C2 -Pyrr3][FSI]2 ). The structure and dynamics of the organic salts were probed using variable temperature solid-state NMR and were compared with the thermal and transport properties. The investigation revealed that [C2 -Pyrr1][FSI]2 , with shorter alkyl-side chains on the dication, displayed increased transport properties compared to [C2 -Pyrr2][FSI]2 and [C2 -Pyrr3][FSI]2 . To determine the proficiency of these dicationic-FSI salts as electrolyte materials for battery applications, 10 mol% and 50 mol% lithium bis(fluorosulfonyl)imide (LiFSI) was mixed with [C2 -Pyrr1][FSI]2 and [C2 -Pyrr2][FSI]2 . Increased transport properties were observed for [C2 -Pyrr1][FSI]2 /10 mol % LiFSI in comparison to [C2 -Pyrr2][FSI]2 /10 % LiFSI, while pulse field gradient NMR analysis revealed the highest Li+ self-diffusion ratio for [C2 -Pyrr1][FSI]2 /50 % LiFSI out of the four Li-salt-containing mixtures.
Collapse
Affiliation(s)
- Shanika Abeysooriya
- Institute for Frontier Materials (IFM), Deakin University, Burwood Hwy, VIC 3125, Australia
| | - Minjae Lee
- Department of Chemistry, Kunsan National University, Gunsan, 54150, South Korea
| | - Seung Hwan Kim
- Department of Chemistry, Kunsan National University, Gunsan, 54150, South Korea
| | - Luke A O'Dell
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC 3220, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials (IFM), Deakin University, Burwood Hwy, VIC 3125, Australia
| |
Collapse
|
3
|
Ferdeghini C, Mezzetta A, D’Andrea F, Pomelli CS, Guazzelli L, Guglielmero L. The Structure-Property Relationship of Pyrrolidinium and Piperidinium-Based Bromide Organic Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8483. [PMID: 36499976 PMCID: PMC9737136 DOI: 10.3390/ma15238483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Two couples of dicationic ionic liquids, featuring pyrrolidinium and piperidinium cations and different linker chains, were prepared and characterized. 1,1'-(propane-1,3-diyl)bis(1-methylpyrrolidinium) bromide, 1,1'-(octane-1,8-diyl)bis(1-methylpyrrolidinium) bromide, 1,1'-(propane-1,3-diyl)bis(1-methylpiperidinium) bromide, and 1,1'-(octane-1,8-diyl)bis(1-methylpiperidinium) bromide were synthesized in quantitative yields and high purity and thermally characterized through TGA and DSC analysis. In this study, we propose a preliminary comparative evaluation of the effect of the linker chain length and of the size of the aliphatic ammonium ring on the thermal and solubility properties of bromide dicationic ionic liquids.
Collapse
Affiliation(s)
- Claudio Ferdeghini
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Felicia D’Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Luca Guglielmero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
4
|
Dicationic ionic liquids based on bis(4-oligoethyleneoxyphenyl) viologen bistriflimide salts exhibiting high ionic conductivities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Chen Y, Han X, Liu Z, Li Y, Sun H, Wang H, Wang J. Thermal decomposition and volatility of ionic liquids: Factors, evaluation and strategies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Bashir M, Majid F, Bibi I, Mushtaq J, Ali A, Farhat LB, Katubi KM, Alwadai N, Khan M, Iqbal M. Ultrasonic assisted synthesis of ZnO nanoflakes and photocatalytic activity evaluation for the degradation of methyl orange. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Beck TS, de Mattos M, Jortieke CR, Vieira JC, Verdi CM, Santos RC, Sagrillo MR, Rossato A, da Silva Silveira L, Frizzo CP. Structural effects of amino acid-based ionic liquids on thermophysical properties, and antibacterial and cytotoxic activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Yu CF, Liu SH, Xia R, Wu KF. Studies on the thermal stability and decomposition kinetics of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide via density functional theory and experimental methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Thermal decomposition behavior, thermal stability and thermal explosion risk evaluation of a novel green hydroxylamine ionic liquid salt. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Lewandowska A, Gajewski P, Szcześniak K, Fojud Z, Robakowska M, Skrzypczak A, Voelkel A, Marcinkowska A. Thiol-ene ionogels based on polymerizable imidazolium ionic liquid. Polym Chem 2022. [DOI: 10.1039/d1py01726h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report the synthesis of polymerizable ionic liquids (PILs) and the synthesis of ionogels by thiol-ene photopolymerization. A series of gemini imidazolium-based bis(trifluoromethylsulfonyl)imide polymerizable ionic liquids with...
Collapse
|
11
|
Spectroscopic characterization andthermal decomposition kinetics of 1,3-dibutyl-imidazolium bromide synthesized through a solvent-free and one-pot method. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Guglielmero L, Mero A, Mezzetta A, Tofani G, D'Andrea F, Pomelli C, Guazzelli L. Novel access to ionic liquids based on trivalent metal–EDTA complexes and their thermal and electrochemical characterization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Ikeda T. Facile Synthesis of Tetra-Branched Tetraimidazolium and Tetrapyrrolidinium Ionic Liquids. ACS OMEGA 2021; 6:19623-19628. [PMID: 34368549 PMCID: PMC8340402 DOI: 10.1021/acsomega.1c02187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 05/04/2023]
Abstract
A facile synthetic route for tetra-branched tetraimidazolium and tetrapyrrolidinium ionic liquids was developed. In contrast to the previous synthetic scheme, the new synthetic route requires only three reaction steps instead of seven. The total yield of tetracation was also improved from 17-21 to 39-41%. Using the new synthetic scheme, four kinds of tetracations were synthesized from the combination of two cationic units (imidazolium and pyrrolidinium) and two counteranions [bis(fluorosulfonyl)imide (FSI) and bis(trifluoromethanesulfonyl)imide (TFSI)]. Basic physical properties including glass transition temperature, thermal decomposition temperature, density, viscosity, and ionic conductivity were determined. The counterion exchange from TFSI to FSI resulted in lower glass transition temperature and higher ionic conductivity. Tetrapyrrolidinium exhibited higher viscosity and lower ionic conductivity than tetraimidazolium. The counterion exchange from TFSI to FSI resulted in lower viscosity in the case of tetraimidazolium, while the opposite result was obtained in the case of tetrapyrrolidinium. Tetracations composed of ethyl imidazolium units, diethylene glycol spacers, and FSI counterions exhibited the highest ionic conductivity of 3.5 × 10-4 S cm-1 at 25 °C under anhydrous conditions. This is the best ionic conductivity in the tetracations ever reported.
Collapse
|
14
|
Carboxymethyl chitosan/ionic liquid imidazolium-based nanoparticles as nanocarriers for zinc phthalocyanine and its photodynamic activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Mezzetta A, Guglielmero L, Mero A, Tofani G, D’Andrea F, Pomelli CS, Guazzelli L. Expanding the Chemical Space of Benzimidazole Dicationic Ionic Liquids. Molecules 2021; 26:4211. [PMID: 34299487 PMCID: PMC8303995 DOI: 10.3390/molecules26144211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Benzimidazole dicationic ionic liquids (BDILs) have not yet been widely explored in spite of their potential. Therefore, two structurally related families of BDILs, paired with either bromide or bistriflimide anions and bearing alkyl spacers ranging from C3 to C6, have been prepared. Their thermal properties have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), while their electrical properties have been assessed by cyclic voltammetry (CV). TG analysis confirmed the higher stability of the bistriflimide BDILs over the bromide BDILs, with minor variation within the two families. Conversely, DSC and CV allowed for ascertaining the role played by the spacer length. In particular, the thermal behavior changed dramatically among the members of the bistriflimide family, and all three possible thermal behavior types of ILs were observed. Furthermore, cyclic voltammetry showed different electrochemical window (C3(C1BenzIm)2/2Tf2N < C4(C1BenzIm)2/2Tf2N, C5(C1BenzIm)2/2Tf2N < C6(C1BenzIm)2/2Tf2N) as well as a reduction peak potential, shape, and intensity as a function of the spacer length. The results obtained highlight the benefit of accessing a more structurally diverse pool of compounds offered by dicationic ILs when compared to the parent monocationic ILs. In particular, gains are to be found in the ease of fine-tuning their properties, which translates in facilitating further investigations toward BDILs as designer solvents and catalysts.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Luca Guglielmero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- DESTEC, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Giorgio Tofani
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Felicia D’Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Christian Silvio Pomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| |
Collapse
|
16
|
Determining Preexponential Factor in Model-Free Kinetic Methods: How and Why? Molecules 2021; 26:molecules26113077. [PMID: 34063956 PMCID: PMC8196664 DOI: 10.3390/molecules26113077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The kinetics of thermally stimulated processes in the condensed phase is commonly analyzed by model-free techniques such as isoconversional methods. Oftentimes, this type of analysis is unjustifiably limited to probing the activation energy alone, whereas the preexponential factor remains unexplored. This article calls attention to the importance of determining the preexponential factor as an integral part of model-free kinetic analysis. The use of the compensation effect provides an efficient way of evaluating the preexponential factor for both single- and multi-step kinetics. Many effects observed experimentally as the reaction temperature shifts usually involve changes in both activation energy and preexponential factor and, thus, are better understood by combining both parameters into the rate constant. A technique for establishing the temperature dependence of the rate constant by utilizing the isoconversional values of the activation energy and preexponential factor is explained. It is stressed that that the experimental effects that involve changes in the preexponential factor can be traced to the activation entropy changes that may help in obtaining deeper insights into the process kinetics. The arguments are illustrated by experimental examples.
Collapse
|