1
|
van den Bruinhorst A, Corsini C, Depraetère G, Cam N, Pádua A, Costa Gomes M. Deep eutectic solvents on a tightrope: balancing the entropy and enthalpy of mixing. Faraday Discuss 2024; 253:273-288. [PMID: 39056473 DOI: 10.1039/d4fd00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The large melting point depressions characterising deep eutectic solvents (DESs) are related to negative deviations from ideal mixing behaviour characterised by the excess Gibbs energy. Favourable excess Gibbs energies result from a balance between the excess entropy and enthalpy of mixing, which was experimentally determined for three choline chloride (ChCl) based mixtures using calorimetry. While the excess Gibbs energy of H2O + ChCl is enthalpy dominated, those of ethylene glycol (EG) + ChCl and 1,3-propanediol + ChCl are entropy dominated. Molecular dynamics simulations using polarisable force-fields show intermolecular hydrogen bonds between DES constituents for H2O + ChCl and EG + ChCl. Hence, inter-species hydrogen bonding does not guarantee enthalpy-dominated melting point depressions. We suggest future research to focus on tuning the entropy-enthalpy balance via the chemical nature of the DES constituents.
Collapse
Affiliation(s)
- Adriaan van den Bruinhorst
- Ionic Liquids Group, Laboratoire de Chimie de l'École Normale Supérieure de Lyon, Centre Nationale de Recherche Scientifique, and Université de Lyon, 69364 Lyon, France.
| | - Chiara Corsini
- Ionic Liquids Group, Laboratoire de Chimie de l'École Normale Supérieure de Lyon, Centre Nationale de Recherche Scientifique, and Université de Lyon, 69364 Lyon, France.
| | - Guillaume Depraetère
- Ionic Liquids Group, Laboratoire de Chimie de l'École Normale Supérieure de Lyon, Centre Nationale de Recherche Scientifique, and Université de Lyon, 69364 Lyon, France.
| | - Nithavong Cam
- Ionic Liquids Group, Laboratoire de Chimie de l'École Normale Supérieure de Lyon, Centre Nationale de Recherche Scientifique, and Université de Lyon, 69364 Lyon, France.
| | - Agílio Pádua
- Ionic Liquids Group, Laboratoire de Chimie de l'École Normale Supérieure de Lyon, Centre Nationale de Recherche Scientifique, and Université de Lyon, 69364 Lyon, France.
| | - Margarida Costa Gomes
- Ionic Liquids Group, Laboratoire de Chimie de l'École Normale Supérieure de Lyon, Centre Nationale de Recherche Scientifique, and Université de Lyon, 69364 Lyon, France.
| |
Collapse
|
2
|
Nanavare P, Sarkar S, Jena AB, Chakrabarti R. Osmolyte-induced conformational stabilization of a hydrophobic polymer. Phys Chem Chem Phys 2024; 26:24021-24040. [PMID: 39247939 DOI: 10.1039/d4cp01694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Elucidating the mechanistic role of osmolytes on conformations of hydrophobic prototypical macromolecules in principle is the stepping stone towards understanding the effect of osmolytes on proteins. Motivated by this, we use equilibrium simulations and umbrella sampling techniques to dissect the underlying mechanism of osmolyte-induced conformational stability of a hydrophobic polymer. Our results unveil a remarkable osmolyte-dependent conformational stabilization of the polymer. In an aqueous solution of 4 M choline chloride (ChCl), the polymer has an even more compact structure than in water. On the other hand, an aqueous solution of 8 M urea stabilizes the extended state of the polymer. Interestingly, the polymer adopts an intermediate hairpin conformation in a mixed osmolyte solution of 4 M ChCl and 8 M urea in water due to the interplay of ChCl and urea. Our simulations identify the relative accumulation of water and the hydrophilic part of choline or preferential binding of urea near the collapsed and the extended states, respectively. Analyses split out the enthalpic and entropic contributions to the overall free energy. This decides the stabilization of the preferred conformation in the chosen osmolyte solution. Our simulations show that in an aqueous solution of ChCl, the hairpin state is stabilized by entropy gain. In contrast, the enthalpic contribution stabilizes the hairpin state in mixed environments. However, a collapsed state is energetically not favored in the presence of urea. In brief, via employing an in silico approach, the current findings indicate the importance of osmolytes in stabilizing the conformational states of hydrophobic polymers.
Collapse
Affiliation(s)
- Pooja Nanavare
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Soham Sarkar
- Eduard-Zintl-Institute für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Abhijit Bijay Jena
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
3
|
Cuvellier JB, Andanson JM, Ballerat-Busserolles K, Hulin H, Artzner F, Malfreyt P, Ghoufi A. Importance of the Electrostatic Correlations in Surface Tension of Hydrated Reline Deep Eutectic Solvent from Combined Experiments and Molecular Dynamics Simulations. J Phys Chem B 2024; 128:4008-4020. [PMID: 38616779 DOI: 10.1021/acs.jpcb.3c08338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, the surface tension and the structure of hydrated reline are investigated by using diverse methods. Initially, the surface tension displays a nonlinear pattern as water content increases, decreasing until reaching 45 wt %, then gradually matching that of pure water. This fluctuation is associated with strong electrostatic correlations present in pure reline, which decrease as more water is added. Changes in surface tension reflect a shift from charge layering in pure reline to an increased interfacial hydrogen bonding as the water content rises. This shift causes the segregation of urea molecules into the bulk phase and a gradual anchoring of water molecules to the air-reline interface. An interesting observation is the antisurfactant effect, where heightened interfacial anchoring results in an unexpected increase in real contribution of surface tension. This, along with weakened electrostatic correlations beyond 45 wt % due to reinforced interfacial hydrogen bonding, contributes to the complex behavior of surface tension observed in this study.
Collapse
Affiliation(s)
| | - Jean-Michel Andanson
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand F-63000, France
| | - Karine Ballerat-Busserolles
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand F-63000, France
| | - Hyazann Hulin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, Rennes F-35000, France
| | - Franck Artzner
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, Rennes F-35000, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand F-63000, France
| | - Aziz Ghoufi
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, Rennes F-35000, France
- Univ Paris-East Creteil, CNRS, ICMPE (UMR 7182), 2 rue Henri Dunant, Thiais F-94320, France
| |
Collapse
|
4
|
AlYammahi J, Darwish AS, Lemaoui T, Boublia A, Benguerba Y, AlNashef IM, Banat F. Molecular Guide for Selecting Green Deep Eutectic Solvents with High Monosaccharide Solubility for Food Applications. ACS OMEGA 2023; 8:26533-26547. [PMID: 37521623 PMCID: PMC10373463 DOI: 10.1021/acsomega.3c03326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Monosaccharides play a vital role in the human diet due to their interesting biological activity and functional properties. Conventionally, sugars are extracted using volatile organic solvents (VOCs). Deep eutectic solvents (DESs) have recently emerged as a new green alternative to VOCs. Nonetheless, the selection criterion of an appropriate DES for a specific application is a very difficult task due to the designer nature of these solvents and the theoretically infinite number of combinations of their constituents and compositions. This paper presents a framework for screening a large number of DES constituents for monosaccharide extraction application using COSMO-RS. The framework employs the activity coefficients at infinite dilution (γi∞) as a measure of glucose and fructose solubility. Moreover, the toxicity analysis of the constituents is considered to ensure that selected constituents are safe to work with. Finally, the obtained viscosity predictions were used to select DESs that are not transport-limited. To provide more insights into which functional groups are responsible for more effective monosaccharide extraction, a structure-solubility analysis was carried out. Based on an analysis of 212 DES constituents, the top-performing hydrogen bond acceptors were found to be carnitine, betaine, and choline chloride, while the top-performing hydrogen bond donors were oxalic acid, ethanolamine, and citric acid. A research initiative was presented in this paper to develop robust computational frameworks for selecting optimal DESs for a given application to develop an effective DES design strategy that can aid in the development of novel processes using DESs.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmad S. Darwish
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Tarek Lemaoui
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Abir Boublia
- Laboratoire
de Physico-Chimie des Hauts Polymères (LPCHP), Département
de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Yacine Benguerba
- Laboratoire
de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif 19000, Algeria
| | - Inas M. AlNashef
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
5
|
AlYammahi J, Darwish AS, Almustafa G, Lemaoui T, AlNashef IM, Hasan SW, Taher H, Banat F. Natural deep eutectic solvents for Ultrasonic-Assisted extraction of nutritious date Sugar: Molecular Screening, Experimental, and prediction. ULTRASONICS SONOCHEMISTRY 2023; 98:106514. [PMID: 37421845 PMCID: PMC10359946 DOI: 10.1016/j.ultsonch.2023.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The aim of this study is to develop an environmentally friendly and effective method for the extraction of nutritious date sugar using natural deep eutectic solvents (NADES) and ultrasound-assisted extraction (USAE). The careful design of a suitable NADES-USAE system was systematically supported by COSMO-RS screening, response surface method (RSM) and artificial neural network (ANN). Initially, 26 natural hydrogen bond donors (HBDs) were carefully screened for sugar affinity using COSMO-RS. The best performing HBDs were then used for the synthesis of 5 NADES using choline chloride (ChCl) as HBA. Among the synthesized NADES, the mixture of ChCl, citric acid (CA) and water (1:1:1 with 20 wt% water) resulted in the highest sugar yield of 78.30 ± 3.91 g/100 g, which is superior to conventional solvents such as water (29.92 ± 1.50 g/100 g). Further enhancements using RSM and ANN led to an even higher sugar recovery of 87.81 ± 2.61 g/100 g, at conditions of 30 °C, 45 min, and a solvent to DFP ratio of 40 mL/g. The method NADES-USAE was then compared with conventional hot water extraction (CHWE) (61.36 ± 3.06) and showed 43.1% higher sugar yield. The developed process not only improves the recovery of the nutritious date sugar but also preserves the heat-sensitive bioactive compounds in dates, making it an attractive alternative to CHWE for industrial utilization. Overall, this study shows a promising approach for the extraction of nutritive sugars from dates using environmentally friendly solvents and advanced technology. It also highlights the potential of this approach for valorizing underutilized fruits and preserving their bioactive compounds.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates (UAE); Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Ahmad S Darwish
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates (UAE); Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Ghaiath Almustafa
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates (UAE)
| | - Tarek Lemaoui
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates (UAE); Research & Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Inas M AlNashef
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates (UAE); Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE; Research & Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, Abu Dhabi, UAE
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates (UAE); Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Hanifa Taher
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates (UAE); Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, Abu Dhabi, UAE
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates (UAE); Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
6
|
Shirota H, Rajbangshi J, Koyakkat M, Baksi A, Cao M, Biswas R. Low-frequency spectra of reline and its mixtures with water: A comparative study based on femtosecond Raman-induced Kerr effect spectroscopy and molecular dynamics simulations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Allegretti C, D'Arrigo P, Gatti FG, Rossato LAM, Ruffini E. Dependence of 1H-NMR T 1 relaxation time of trimethylglycine betaine deep eutectic solvents on the molar composition and on the presence of water. RSC Adv 2023; 13:3004-3007. [PMID: 36756439 PMCID: PMC9850698 DOI: 10.1039/d2ra08082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
1H-NMR spin lattice relaxation times (T 1), measured by inversion recovery technique, allowed to establish the stoichiometric coefficient (ratio between the H-bond acceptor and H-bond donor) of a series of trimethylglycine betaine/diol based deep eutectic solvents (DESs); ethylene glycol, triethylene glycol and 1,3-propandiol were selected as H-bond donors. The maximum amount of water tolerated by the DES, before its complete hydration, was determined as well. Finally, the method was validated comparing the eutectic composition of the betaine/glycol system with that determined by means of differential scanning calorimetry analysis; the stoichiometric coefficients were identical.
Collapse
Affiliation(s)
- Chiara Allegretti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano P.zza Leonardo da Vinci 32 Milano 20133 Italy
| | - Paola D'Arrigo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano P.zza Leonardo da Vinci 32 Milano 20133 Italy .,Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - Consiglio Nazionale delle Ricerche (SCITEC-CNR) Via Luigi Mancinelli 7 Milano 20131 Italy
| | - Francesco G. Gatti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di MilanoP.zza Leonardo da Vinci 32Milano20133Italy
| | - Letizia A. M. Rossato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di MilanoP.zza Leonardo da Vinci 32Milano20133Italy
| | - Eleonora Ruffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano P.zza Leonardo da Vinci 32 Milano 20133 Italy
| |
Collapse
|
8
|
Liquid structure of a water-based, hydrophobic and natural deep eutectic solvent: the case of thymol-water. A Molecular Dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Engelbrecht LDV, Ji X, Carbonaro CM, Laaksonen A, Mocci F. MD simulations explain the excess molar enthalpies in pseudo-binary mixtures of a choline chloride-based deep eutectic solvent with water or methanol. Front Chem 2022; 10:983281. [DOI: 10.3389/fchem.2022.983281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The addition of molecular liquid cosolvents to choline chloride (ChCl)-based deep eutectic solvents (DESs) is increasingly investigated for reducing the inherently high bulk viscosities of the latter, which represent a major obstacle for potential industrial applications. The molar enthalpy of mixing, often referred to as excess molar enthalpy HE—a property reflecting changes in intermolecular interactions upon mixing—of the well-known ChCl/ethylene glycol (1:2 molar ratio) DES mixed with either water or methanol was recently found to be of opposite sign at 308.15 K: Mixing of the DES with water is strongly exothermic, while methanol mixtures are endothermic over the entire mixture composition range. Knowledge of molecular-level liquid structural changes in the DES following cosolvent addition is expected to be important when selecting such “pseudo-binary” mixtures for specific applications, e.g., solvents. With the aim of understanding the reason for the different behavior of selected DES/water or methanol mixtures, we performed classical MD computer simulations to study the changes in intermolecular interactions thought to be responsible for the observed HE sign difference. Excess molar enthalpies computed from our simulations reproduce, for the first time, the experimental sign difference and composition dependence of the property. We performed a structural analysis of simulation configurations, revealing an intriguing difference in the interaction modes of the two cosolvents with the DES chloride anion: water molecules insert between neighboring chloride anions, forming ionic hydrogen-bonded bridges that draw the anions closer, whereas dilution of the DES with methanol results in increased interionic separation. Moreover, the simulated DES/water mixtures were found to contain extended hydrogen-bonded structures containing water-bridged chloride pair arrangements, the presence of which may have important implications for solvent applications.
Collapse
|
10
|
Advances in the development of novel green liquids: thymol/water, thymol/urea and thymol/phenylacetic acid as innovative hydrophobic natural deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Lorenzetti AS, Lo Fiego MJ, Silva MF, Domini C, Gomez FJ. Water behavior study for tailoring fructose-citric acid based natural deep eutectic solvent properties towards antibiotics solubilization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Chai K, Lu X, Zhou Y, Liu H, Wang G, Jing Z, Zhu F, Han L. Hydrogen bonds in aqueous choline chloride solutions by DFT calculations and X-ray scattering. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Micellization of conventional and gemini surfactants in aquoline: A case of exclusively water based deep eutectic solvent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Nanavare P, Choudhury AR, Sarkar S, Maity A, Chakrabarti R. Structure and Orientation of Water and Choline Chloride Molecules Around a Methane Hydrophobe: A Computer Simulation Study. Chemphyschem 2022; 23:e202200446. [DOI: 10.1002/cphc.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Pooja Nanavare
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry INDIA
| | - Asha Rani Choudhury
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry INDIA
| | - Soham Sarkar
- TU Darmstadt: Technische Universitat Darmstadt Eduard-Zintl-Institute für Anorganische und Physikalische Chemie INDIA
| | - Atanu Maity
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry INDIA
| | - Rajarshi Chakrabarti
- Indian Institute of Technology Bombay Chemistry Indian Institute of Technology BombayPowaiIndia 400076 Mumbai INDIA
| |
Collapse
|
15
|
Lobo Ferreira AIMC, Vilas-Boas SM, Silva RMA, Martins MAR, Abranches DO, Soares-Santos PCR, Almeida Paz FA, Ferreira O, Pinho SP, Santos LMNBF, Coutinho JAP. Extensive characterization of choline chloride and its solid-liquid equilibrium with water. Phys Chem Chem Phys 2022; 24:14886-14897. [PMID: 35674089 DOI: 10.1039/d2cp00377e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of choline chloride (ChCl) is recognized due to its widespread use in the formulation of deep eutectic solvents. The controlled addition of water in deep eutectic solvents has been proposed to overcome some of the major drawbacks of these solvents, namely their high hygroscopicities and viscosities. Recently, aqueous solutions of ChCl at specific mole ratios have been presented as a novel, low viscous deep eutectic solvent. Nevertheless, these proposals are suggested without any information about the solid-liquid phase diagram of this system or the deviations from the thermodynamic ideality of its precursors. This work contributes significantly to this matter as the phase behavior of pure ChCl and (ChCl + H2O) binary mixtures was investigated by calorimetric and analytical techniques. The thermal behavior and stability of ChCl were studied by polarized light optical microscopy and differential scanning calorimetry, confirming the existence of a solid-solid transition at 352.2 ± 0.6 K. Additionally, heat capacity measurements of pure ChCl (covering both ChCl solid phases) and aqueous solutions of ChCl (xChCl < 0.4) were performed using a heat-flow differential scanning microcalorimeter or a high-precision heat capacity drop calorimeter, allowing the estimation of a heat capacity change of (ChCl) ≈ 39.3 ± 10 J K-1 mol-1, between the hypothetical liquid and the observed crystalline phase at 298.15 K. The solid-liquid phase diagram of the ChCl + water mixture was investigated in the whole concentration range by differential scanning calorimetry and the analytical shake-flask method. The phase diagram obtained for the mixture shows an eutectic temperature of 204 K, at a mole fraction of choline chloride close to xChCl = 0.2, and a shift of the solid-solid transition of ChCl-water mixtures of 10 K below the value observed for pure choline chloride, suggesting the appearance of a new crystalline structure of ChCl in the presence of water, as confirmed by X-ray diffraction. The liquid phase presents significant negative deviations to ideality for water while COSMO-RS predicts a near ideal behaviour for ChCl.
Collapse
Affiliation(s)
- Ana I M C Lobo Ferreira
- CIQUP, Institute of Molecular Sciences (IMS) - Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal.
| | - Sérgio M Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal. .,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rodrigo M A Silva
- CIQUP, Institute of Molecular Sciences (IMS) - Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal.
| | - Mónia A R Martins
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dinis O Abranches
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula C R Soares-Santos
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Simão P Pinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Luís M N B F Santos
- CIQUP, Institute of Molecular Sciences (IMS) - Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal.
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
High-Performance Extraction Process of Anthocyanins from Jussara (Euterpe edulis) Using Deep Eutectic Solvents. Processes (Basel) 2022. [DOI: 10.3390/pr10030615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
New strategies for obtaining target bioactive compounds and natural pigments with the use of “green solvents” are consistently being developed, and deep eutectic solvents are (DES) a great alternative. This work established the significant variables and models for anthocyanin extraction, using DES and experimental design, of Euterpe edulis Mart. (jussara) fruit pulp, an endangered palm tree from the Brazilian Atlantic Forest. From a screening of seven initially tested DES, choline chloride/xylitol-based solvents had the best results with up to 42% increase in the total anthocyanin yield compared to methanolic extraction. Antioxidant assays also revealed a maximum antioxidant capacity of 198.93 mmol Trolox/100 g dry weight basis. The DES extract showed slower degradation to heat at 60° and 90 °C (2.5 times) and indoor constant light source (1.9 times) than methanolic extracts. The optimal extract also revealed slight inhibition of S. enterica and S. aureus growth in the agar plate.
Collapse
|
17
|
Sajjadur Rahman M, Kyeremateng J, Saha M, Asare S, Uddin N, Halim MA, Raynie DE. Evaluation of the experimental and computed properties of choline chloride-water formulated deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Velez C, Acevedo O. Simulation of deep eutectic solvents: Progress to promises. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Caroline Velez
- Department of Chemistry University of Miami Coral Gables Florida USA
| | - Orlando Acevedo
- Department of Chemistry University of Miami Coral Gables Florida USA
| |
Collapse
|
19
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
20
|
Cea-Klapp E, Garrido JM, Quinteros-Lama H. Insights into the orientation and hydrogen bond influence on thermophysical and transport properties in choline-based deep eutectic solvents and methanol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Sarkar S, Maity A, Chakrabarti R. In Silico Elucidation of Molecular Picture of Water-Choline Chloride Mixture. J Phys Chem B 2021; 125:13212-13228. [PMID: 34812630 DOI: 10.1021/acs.jpcb.1c06636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Choline chloride (ChCl) is a component of several deep eutectic solvents (DESs) having numerous applications. Recent studies have reported manifold promising use of aqueous choline chloride solution as an alternative to DES, where water plays the role of the hydrogen-bond donor. The characteristic physical properties of the DESs and aqueous DES originate from the "inter-" and intraspecies hydrogen-bond network formed by the constituents. However, a detailed molecular-level picture of choline chloride and water mixture is largely lacking in the literature. This motivates us to carry out extensive all-atom molecular dynamics simulations of the ChCl-water mixture of varying compositions. Our analyses clearly show an overall increase in the interspecies association with an increase in ChCl concentration. At higher concentrations, the trimethylammonium groups of choline are stabilized by a nonpolar interaction, whereas the hydroxyl groups preferentially interact with water. Chloride ions are found to be involved in two types of interactions: one where chloride ions intercalate two or more choline cations, and the other one where they are surrounded by five to six water molecules forming solvated chloride ions. However, the relative fractions of these two types of associations depend on the concentration of ChCl in the mixture. Another important structural aspect is the disruption of the hydrogen-bonded water network due to the presence of both choline cations and chloride ions. However, chloride ions participate to partially restore the tetrahedral arrangement of partners around water molecules.
Collapse
Affiliation(s)
- Soham Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Atanu Maity
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
22
|
Impact of deep eutectic solvents and their constituents on the aqueous solubility of phloroglucinol dihydrate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Choline Chloride-Based DES as Solvents/Catalysts/Chemical Donors in Pharmaceutical Synthesis. Molecules 2021; 26:molecules26206286. [PMID: 34684867 PMCID: PMC8540169 DOI: 10.3390/molecules26206286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022] Open
Abstract
DES are mixtures of two or more compounds, able to form liquids upon mixing, with lower freezing points when compared to the individual constituents (eutectic mixtures). This attitude is due to the specific hydrogen-bond interactions network between the components of the mixture. A notable characteristic of DES is the possibility to develop tailor-made mixtures by changing the components ratios or a limited water dilution, for special applications, making them attractive for pharmaceutical purposes. In this review, we focused our attention on application of ChCl-based DES in the synthesis of pharmaceutical compounds. In this context, these eutectic mixtures can be used as solvents, solvents/catalysts, or as chemical donors and we explored some representative examples in recent literature of such applications.
Collapse
|
24
|
Shumilin I, Harries D. Cyclodextrin solubilization in hydrated reline: Resolving the unique stabilization mechanism in a deep eutectic solvent. J Chem Phys 2021; 154:224505. [PMID: 34241212 DOI: 10.1063/5.0052537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By complexing with hydrophobic compounds, cyclodextrins afford increased solubility and thermodynamic stability to hardly soluble compounds, thereby underlining their invaluable applications in pharmaceutical and other industries. However, common cyclodextrins such as β-cyclodextrin, suffer from limited solubility in water, which often leads to precipitation and formation of unfavorable aggregates, driving the search for better solvents. Here, we study the solvation of cyclodextrin in deep eutectic solvents (DESs), environmentally friendly media that possess unique properties. We focus on reline, the DES formed from choline chloride and urea, and resolve the mechanism through which its constituents elevate β-cyclodextrin solubility in hydrated solutions compared to pure water or dry reline. Combining experiments and simulations, we determine that the remarkable solubilization of β-cyclodextrin in hydrated reline is mostly due to the inclusion of urea inside β-cyclodextrin's cavity and at its exterior surfaces. The role of choline chloride in further increasing solvation is twofold. First, it increases urea's solubility beyond the saturation limit in water, ultimately leading to much higher β-cyclodextrin solubility in hydrated reline in comparison to aqueous urea solutions. Second, choline chloride increases urea's accumulation in β-cyclodextrin's vicinity. Specifically, we find that the accumulation of urea becomes stronger at high reline concentrations, as the solution transitions from reline-in-water to water-in-reline, where water alone cannot be regarded as the solvent. Simulations further suggest that in dry DES, the mechanism of β-cyclodextrin solvation changes so that reline acts as a quasi-single component solvent that lacks preference for the accumulation of urea or choline chloride around β-cyclodextrin.
Collapse
Affiliation(s)
- Ilan Shumilin
- The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
25
|
Triolo A, Di Pietro ME, Mele A, Lo Celso F, Brehm M, Di Lisio V, Martinelli A, Chater P, Russina O. Liquid structure and dynamics in the choline acetate:urea 1:2 deep eutectic solvent. J Chem Phys 2021; 154:244501. [PMID: 34241369 DOI: 10.1063/5.0054048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report on the thermodynamic, structural, and dynamic properties of a recently proposed deep eutectic solvent, formed by choline acetate (ChAc) and urea (U) at the stoichiometric ratio 1:2, hereinafter indicated as ChAc:U. Although the crystalline phase melts at 36-38 °C depending on the heating rate, ChAc:U can be easily supercooled at sub-ambient conditions, thus maintaining at the liquid state, with a glass-liquid transition at about -50 °C. Synchrotron high energy x-ray scattering experiments provide the experimental data for supporting a reverse Monte Carlo analysis to extract structural information at the atomistic level. This exploration of the liquid structure of ChAc:U reveals the major role played by hydrogen bonding in determining interspecies correlations: both acetate and urea are strong hydrogen bond acceptor sites, while both choline hydroxyl and urea act as HB donors. All ChAc:U moieties are involved in mutual interactions, with acetate and urea strongly interacting through hydrogen bonding, while choline being mostly involved in van der Waals mediated interactions. Such a structural situation is mirrored by the dynamic evidences obtained by means of 1H nuclear magnetic resonance techniques, which show how urea and acetate species experience higher translational activation energy than choline, fingerprinting their stronger commitments into the extended hydrogen bonding network established in ChAc:U.
Collapse
Affiliation(s)
- Alessandro Triolo
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| | - Maria Enrica Di Pietro
- Department of Chemistry, Materials and Chemical Engineering "G. Natta," Politecnico di Milano, Milano, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "G. Natta," Politecnico di Milano, Milano, Italy
| | - Fabrizio Lo Celso
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Valerio Di Lisio
- Department of Chemistry, University of Rome Sapienza, Rome, Italy
| | | | - Philip Chater
- Diamond House, Harwell Science and Innovation Campus, Diamond Light Source, Ltd., Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Olga Russina
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| |
Collapse
|