1
|
Manna E, Barai M, Mandal MK, Sultana H, Guchhait KC, Gawali SL, Aswal VK, Ghosh C, Patra A, Misra AK, Yusa SI, Hassan PA, Panda AK. Impact of Ionic Liquids on the Physicochemical Behavior of Vesicles. J Phys Chem B 2024; 128:6816-6829. [PMID: 38959082 DOI: 10.1021/acs.jpcb.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The effects of two ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) and 1-butyl-1-methyl pyrrolidinium tetrafluoroborate ([bmp]BF4), on a mixture of phospholipids (PLs) 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) (6:3:1, M/M/M, 70% PL) in combination with 30 mol % cholesterol (CHOL) were investigated in the form of a solvent-spread monolayer and bilayer (vesicle). Surface pressure (π)-area (A) isotherm studies, using a Langmuir surface balance, revealed the formation of an expanded monolayer, while the cationic moiety of the IL molecules could electrostatically and hydrophobically bind to the PLs on the palisade layer. Turbidity, dynamic light scattering (size, ζ-potential, and polydispersity index), electron microscopy, small-angle X-ray/neutron scattering, fluorescence spectroscopy, and differential scanning calorimetric studies were carried out to evaluate the effects of IL on the structural organization of bilayer in the vesicles. The ILs could induce vesicle aggregation by acting as a "glue" at lower concentrations (<1.5 mM), while at higher concentrations, the ILs disrupt the bilayer structure. Besides, ILs could result in the thinning of the bilayer, evidenced from the scattering studies. Steady-state fluorescence anisotropy and lifetime studies suggest asymmetric insertion of ILs into the lipid bilayer. MTT assay using human blood lymphocytes indicates the safe application of vesicles in the presence of ILs, with a minimal toxicity of up to 2.5 mM IL in the dispersion. These results are proposed to have applications in the field of drug delivery systems with benign environmental impact.
Collapse
Affiliation(s)
- Emili Manna
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Manas K Mandal
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Kartik C Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Santosh L Gawali
- Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Ajay K Misra
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Shin-Ichi Yusa
- Department of Applied Chemistry,Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | | | - Amiya K Panda
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| |
Collapse
|
2
|
Singh M, Singh G, Kaur H, Muskan, Kumar S, Aswal VK, Kang TS. Self-assembly of choline-based surface-active ionic liquids and concentration-dependent enhancement in the enzymatic activity of cellulase in aqueous medium. Phys Chem Chem Phys 2024; 26:16218-16233. [PMID: 38804505 DOI: 10.1039/d4cp01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The micellization of choline-based anionic surface-active ionic liquids (SAILs) having lauroyl sarcosinate [Sar]-, dodecylsulfate [DS]-, and deoxycholate [Doc]- as counter-ions was investigated in an aqueous medium. Density functional theory (DFT) was employed to investigate the net interactional energy (Enet), extent of non-covalent interactions, and band gap of the choline-based SAILs. The critical micelle concentration (cmc) along with various parameters related to the surface adsorption, counter-ion binding (β), and polarity of the cores of the micelles were deduced employing surface tension measurements, conductometric titrations and fluorescence spectroscopy, respectively. A dynamic light scattering (DLS) system equipped with zeta-potential measurement set-up and small-angle neutron scattering (SANS) were used to predict the size, zeta-potential, and morphology, respectively, of the formed micelles. Thermodynamic parameters such as standard Gibb's free energy and standard enthalpy change of micellization were calculated using isothermal titration calorimetry (ITC). Upon comparing with sodium salt analogues, it was established that the micellization was predominantly governed by the extent of hydration of [Cho]+, the head groups of the respective anions, and the degree of counter-ion binding (β). Considering the concentration dependence of the enzyme-SAIL interactions, aqueous solutions of the synthesized SAILs at two different concentrations (below and above the cmc) were utilized as the medium for testing the enzymatic activity of cellulase. The activity of cellulase was found to be ∼7- to ∼13-fold higher compared to that observed in buffers in monomeric solutions of the SAILs and followed the order: [Cho][Sar] > [Cho][DS] > [Cho][Doc]. In the micellar solution, a ∼4- to 5-fold increase in enzymatic activity was observed.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry, UGC-Centre for Advance Studies - II, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Gurbir Singh
- Department of Chemistry, UGC-Centre for Advance Studies - II, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Harmandeep Kaur
- Department of Chemistry, UGC-Centre for Advance Studies - II, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Muskan
- Department of Chemistry, UGC-Centre for Advance Studies - II, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Tejwant Singh Kang
- Department of Chemistry, UGC-Centre for Advance Studies - II, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
3
|
Patel N, Soni SS, Patel N, Patel K, Patel VK, Sharma D, Panjabi SH. Synthesis, Self-Aggregation, Surface Characteristics, Electrochemical Property, Micelle Size, and Antimicrobial Activity of a Halogen-Free Picoline-Based Surface-Active Ionic Liquid. ACS OMEGA 2022; 7:28974-28984. [PMID: 36033664 PMCID: PMC9404176 DOI: 10.1021/acsomega.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
We present a new approach toward the design of a halogen-free picoline-based surface-active ionic liquid (SAIL) (1-octyl-4-methyl pyridinium dodecyl sulfate) [C8γPic]DS consisting of long dodecyl sulfate (DS) as an anion. The surface properties, micellization behavior, and antimicrobial activity in an aqueous solution were investigated using tensiometry, conductometry, and ultraviolet (UV) spectroscopy. Incorporating the DS group in SAIL leads to lower critical micellar concentration (CMC) and enhanced adsorption at the air/water interface of the functionalized ionic liquid compared to the C8-alkyl chain-substituted pyridine ionic liquids. The antimicrobial activity was evaluated against a representative Gram-negative and Gram-positive bacteria panel. Antibacterial activities increased with the alkyl chain length, C8 being the homologous most effective antimicrobial agent. The micelle size of [C8γPic]DS was determined by the dynamic light-scattering (DLS) study. Cyclic voltammetry (CV) measurements have been employed to evaluate the interaction between the SAIL micelle and working electrode, diffusion coefficient, and micelle size of the SAIL solution. The diffusion coefficient explored the correlation of surface properties and the antimicrobial activity of [C8γPic]DS. This halogen-free SAIL is the future of wetting agents and emulsion studies in agriculture due to its small micelle size and surface characteristics.
Collapse
Affiliation(s)
- Nidhi
N. Patel
- Department
of Chemical Sciences, P. D. Patel Institute of Applied Sciences, CHARUSAT University, Changa, Gujarat 388421, India
| | - Saurabh S. Soni
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat388120, India
| | - Niraj Patel
- Organic
Chemistry Department, Institute of Science and Technology for Advanced
Research (ISTAR), CVM University, Vallabh Vidyanagar, Anand, Gujarat 388120, India
| | - Kiran Patel
- Director,
Grow Leaf Biotech Private Limited, Anand, Gujarat 388120, India
| | - Vaibhav K. Patel
- Department
of Chemical Sciences, P. D. Patel Institute of Applied Sciences, CHARUSAT University, Changa, Gujarat 388421, India
| | - Deep Sharma
- Department
of Chemical Sciences, P. D. Patel Institute of Applied Sciences, CHARUSAT University, Changa, Gujarat 388421, India
| | - Sanjay H. Panjabi
- Department
of Chemical Sciences, P. D. Patel Institute of Applied Sciences, CHARUSAT University, Changa, Gujarat 388421, India
| |
Collapse
|
4
|
Kuznetsova DA, Kuznetsov DM, Vasileva LA, Toropchina AV, Belova DK, Amerhanova SK, Lyubina AP, Voloshina AD, Ya. Zakharova L. Pyrrolidinium surfactants with a biodegradable carbamate fragment: Self-assembling and biomedical application. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|