1
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Wang L, Liu J, Wang X, Li X, Zhang X, Yuan L, Wu Y, Liu M. Effect of the combined binding of topotecan and catechin/protocatechuic acid to a pH-sensitive DNA tetrahedron on release and cytotoxicity: Spectroscopic and calorimetric studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124179. [PMID: 38522375 DOI: 10.1016/j.saa.2024.124179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
The therapeutic efficacy of chemotherapy drugs can be effectively improved through the dual effects of their combination with natural polyphenols and the delivery of targeted DNA nanostructures. In this work, the interactions of topotecan (TPT), (+)-catechin (CAT), or protocatechuic acid (PCA) with a pH-sensitive DNA tetrahedron (MUC1-TD) in the binary and ternary systems at pHs 5.0 and 7.4 were investigated by fluorescence spectroscopy and calorimetry. The intercalative binding mode of TPT/CAT/PC to MUC1-TD was confirmed, and their affinity was ranked in the order of PCA > CAT > TPT. The effects of the pH-sensitivity of MUC1-TD and different molecular structures of CAT and PCA on the loading, release, and cytotoxicity of TPT were discussed. The weakened interaction under acidic conditions and the co-loading of CAT/PCA, especially PCA, improved the release of TPT loaded by MUC1-TD. The targeting of MUC1-TD and the synergistic effect with CAT/PCA, especially CAT, enhanced the cytotoxicity of TPT on A549 cells. For L02 cells, the protective effect of CAT/PCA reduced the damage caused by TPT. The single or combined TPT loaded by MUC1-TD was mainly concentrated in the nucleus of A549 cells. This work will provide key information for the combined application of TPT and CAT/PCA loaded by DNA nanostructures to improve chemotherapy efficacy and reduce side effects.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Xiangtai Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
3
|
Li X, Wu Y, Zhang X, Liu J, Zhang Y, Yuan L, Liu M. Thermodynamic and cellular studies of doxorubicin/daunorubicin loaded by a DNA tetrahedron for diagnostic imaging, chemotherapy, and gene therapy. Int J Biol Macromol 2023; 251:126245. [PMID: 37562474 DOI: 10.1016/j.ijbiomac.2023.126245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The combined diagnostic imaging, chemotherapy, and gene therapy based on DNA nanocarriers can reduce the toxic side effects and overcome multidrug resistance (MDR). In this study, we designed an antisense oligonucleotides (ASOs)-linked DNA tetrahedron (ASOs-TD). The detection limit of ASOs-TD for MDR1 mRNA was 0.05 μM. By using fluorescence spectroscopy and isothermal titration calorimetry (ITC), the interactions between doxorubicin (DOX) /daunorubicin (DAU) and ASOs-TD were investigated. The number of binding sites (n), binding constant (Ka), entropy change (ΔSo), enthalpy change (ΔHo) and Gibbs free energy change (ΔGo) were obtained. The intercalation of DOX/DAU with ASOs-TD was demonstrated by differential scanning calorimetry (DSC) and quenching researches of potassium ferricyanide K4[Fe(CN)6]. The in vitro release rate of DOX/DAU loaded in ASOs-TD was accelerated by deoxyribonuclease I (DNase I). In vitro cytotoxicity proved the good gene therapy effect of ASOs-TD and the increased cytotoxicity of DOX/DAU to MCF-7/ADR cells. The results of confocal laser scanning microscope (CLSM) suggested that ASOs-TD could effectively identify drug-resistant cells due to its good imaging ability for MDR1 mRNA. This work offers theoretical significance for overcoming MDR using DNA nanostructures which combine diagnostic imaging, chemotherapy, and gene therapy.
Collapse
Affiliation(s)
- Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Jie Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yanqing Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China; Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| |
Collapse
|
4
|
Liu X, Zhang X, Yao Y, Shi P, Zeng C, Zhang Q. Construction of DNA-based molecular circuits using normally open and normally closed switches driven by lambda exonuclease. NANOSCALE 2023; 15:7755-7764. [PMID: 37051702 DOI: 10.1039/d3nr00427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Building synthetic molecular circuits is an important way to realize ion detection, information processing, and molecular computing. However, it is still challenging to implement the NOT logic controlled by a single molecule input in synthetic molecular circuits wherein the presence or absence of the molecule represents the ON or OFF state of the input. Here, based on lambda exonuclease (λ exo), for the first time, we propose the normally open (NO) and normally closed (NC) switching strategy with a unified signal transmission mechanism to build molecular circuits. Specifically, the opposite logic can be output with or without a single signal, and the state of the switch can be adjusted by the addition order and time interval of the upstream signal and switch signal, which endows the switch with time-responsive characteristics. In addition, a time-delay relay with the function of delayed disconnection is developed to realize quantitative control of outputs, which has the potential to meet the automation control need of the system. Finally, digital square and square root circuits are constructed by cascading the NO and NC switches, which demonstrates the versatility of switches. Our design can be extended to time logic and complex digital computing circuits for use in information processing and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
5
|
Wang L, Wu Y, Weng T, Li X, Zhang X, Zhang Y, Yuan L, Zhang Y, Liu M. Binding of combined irinotecan and epicatechin to a pH-responsive DNA tetrahedron for controlled release and enhanced cytotoxicity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Weng T, Wang L, Zhang X, Wu Y, Zhao Y, Zhang Y, Han J, Liu M. A pH-sensitive DNA tetrahedron for targeted release of anthracyclines: Binding properties investigation and cytotoxicity evaluation. Int J Biol Macromol 2022; 223:766-778. [PMID: 36372106 DOI: 10.1016/j.ijbiomac.2022.11.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
The anticancer efficacy of chemotherapeutic agents can be enhanced by the loading of DNA nanostructures, which is closely related to their interactions. This study achieved pH-responsive and targeted anthracycline delivery using i-motif and MUC1 aptamer co-modified DNA tetrahedron (MUC1-TD). The thermodynamic parameters for the binding of doxorubicin (DOX) and epirubicin (EPI) to MUC1-TD at pHs 7.4 and 5.0 were obtained. The smaller binding constant and the number of binding sites at pH 5.0 than at pH 7.4 indicated that acidic conditions favored the release of DOX and EPI loaded by MUC1-TD. The binding affinity of DOX was stronger than that of EPI at the same pH value due to their different chemical stereostructures. The intercalative binding mechanism was verified. In vitro release experiments revealed that acid pH and deoxyribonuclease I accelerated the release of DOX and EPI. The faster release rate of EPI than DOX was related to their binding affinity. In vitro cytotoxicity and cell uptake experiments revealed that the cytotoxicity of DOX and EPI loaded by MUC1-TD to MCF-7 cells was significantly higher than that to L02 cells. This work will provide theoretical guidance for the application of pH-responsive MUC1-TD nanocarriers in the field of pharmaceutics.
Collapse
Affiliation(s)
- Tianxin Weng
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yongfang Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; Liaocheng Hi-tech Biotechnology Co., Ltd., Liaocheng 252059, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| |
Collapse
|
7
|
Hanke M, Grundmeier G, Keller A. Direct visualization of the drug loading of single DNA origami nanostructures by AFM-IR nanospectroscopy. NANOSCALE 2022; 14:11552-11560. [PMID: 35861612 DOI: 10.1039/d2nr02701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The efficient loading of DNA nanostructures with intercalating or groove-binding drugs is an important prerequisite for various applications in drug delivery. However, unambiguous verification and quantification of successful drug loading is often rather challenging. In this work, AFM-IR nanospectroscopy is thus employed to directly visualize the loading of DNA origami nanostructures with the photosensitizer methylene blue (MB). Single MB-loaded DNA origami nanostructures can be clearly resolved in high-resolution infrared (IR) maps and the occurrence of MB-specific IR absorption correlates well with the topographic signals of the DNA origami nanostructures. The intensity of the recorded MB absorption bands furthermore scales with the MB concentration used for MB loading. By comparing single- and multilayer DNA origami nanostructures, it is also shown that the IR signal intensity of the loaded MB increases with the thickness of the DNA origami nanostructures. This indicates that also DNA double helices located in the core of bulky 3D DNA origami nanostructures are accessible for MB loading. AFM-IR nanospectroscopy thus has the potential to become an invaluable tool for quantifying drug loading of DNA origami nanostructures and optimizing drug loading protocols.
Collapse
Affiliation(s)
- Marcel Hanke
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
8
|
Weng T, Wang L, Liu Y, Zhang X, Wu Y, Zhang Y, Han J, Liu M. Interaction of bisdemethoxycurcumin with sodium dodecyl sarcosine + Tween 20/Tween 60 mixed surfactants: Insights from multispectral analysis and solubilization effect. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ren Y, Liu T, Liu H, Zhu Y, Qi X, Liu X, Zhao Y, Wu Y, Zhang N, Liu M. Functional improvement of (−)-epicatechin gallate and piceatannol through combined binding to β-lactoglobulin: Enhanced effect of heat treatment and nanoencapsulation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Wang D, Liu M, Wu Y, Weng T, Wang L, Zhang Y, Zhao Y, Han J. Idarubicin/mithramycin-acridine orange combination drugs co-loaded by DNA nanostructures: Different effects of intercalation and groove binding on drug release and cytotoxicity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|