1
|
Azyat K, Makeiff D, Smith B, Wiebe M, Launspach S, Wagner A, Kulka M, Godbert N. The Effect of Branched Alkyl Chain Length on the Properties of Supramolecular Organogels from Mono- N-Alkylated Primary Oxalamides. Gels 2022; 9:gels9010005. [PMID: 36661773 PMCID: PMC9858617 DOI: 10.3390/gels9010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Mono-N-alkylated primary oxalamide derivatives with different sized branched alkyl tail-groups were excellent low molecular weight gelators for a variety of different organic solvents with different polarities and hydrogen-bonding abilities. Solvent-gelator interactions were analyzed using Hansen solubility parameters, while 1H NMR and FTIR spectroscopy were used to probe the driving forces for the supramolecular gelation. The molecular structures of the twin tail-groups did not significantly affect the supramolecular gelation behavior in different solvents. However, for select solvents, the molecular structures of the tail-groups did have a significant effect on gel properties such as the critical gelator concentration, thermal stability, gel stiffness, gel strength, network morphology, and molecular packing. Finally, metabolic activity studies showed that the primary alkyl oxalamide gelators had no effect on the metabolic activity of mouse immune cells, which suggests that the compounds are not cytotoxic and are suitable for use in biomedical applications.
Collapse
Affiliation(s)
- Khalid Azyat
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Darren Makeiff
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Bradley Smith
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Mickie Wiebe
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Steve Launspach
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Ashley Wagner
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Marianna Kulka
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Nicolas Godbert
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
2
|
Self-Assembly of Alkylamido Isophthalic Acids toward the Design of a Supergelator: Phase-Selective Gelation and Dye Adsorption. Gels 2022; 8:gels8050285. [PMID: 35621583 PMCID: PMC9140382 DOI: 10.3390/gels8050285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
A new series of 5-alkylamido isophthalic acid (ISA) derivatives with varying single and twin alkyl chain lengths were designed and synthesized as potential supramolecular organogelators. 5-alkylamido ISAs with linear or branched alkyl tail-groups of different lengths were effective gelators for low polarity solvents. In particular, among the presented series, a derivative with a branched, 24 carbon atom tail-group behaves as a “supergelator” with up to twenty organic solvents forming gels that are highly stable over time. The gelation behavior was analyzed using Hansen solubility parameters, and the thermal stability and viscoelastic properties of select gels were characterized. Microscopy, spectroscopy, powder X-ray diffraction, and computer modeling studies were consistent with a hierarchical self-assembly process involving the formation of cyclic H-bonded hexamers via the ISA carboxylic acid groups, which stack into elementary fibers stabilized by H-bonding of the amide linker groups and π–π stacking of the aromatic groups. These new nanomaterials exhibited potential for the phase-selective gelation of oil from oil–water mixtures and dye uptake from contaminated water. The work expands upon the design and synthesis of supramolecular self-assembled nanomaterials and their application in water purification/remediation.
Collapse
|