1
|
Di Muzio S, Trequattrini F, Palumbo O, Roy P, Brubach JB, Paolone A. An Eutectic Mixture in the Tetrabutylammonium Bromide-Octanol System: Macroscopic and Microscopic Points of View. Chemphyschem 2024; 25:e202400219. [PMID: 38726706 DOI: 10.1002/cphc.202400219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Indexed: 06/21/2024]
Abstract
An eutectic mixture of tetrabutylammonium bromide and octanol in the molar ratio 1-10 exhibited a melting point of -17 °C. This system was investigated by means of infrared spectroscopy, in the liquid and in the solid state. Classical molecular dynamics was performed to study the fine details of the hydrogen bond interactions established in the mixture. Both octanol and the mixtures displayed an almost featureless far-infrared spectrum in the liquid state but it becomes highly structured in the solid phase. DFT calculations suggest that new vibrational modes appearing in the mixture at low temperatures may be related to the population of the higher energy conformers of the alcohol. Mid-infrared spectroscopy measurements evidenced no shift of the CH stretching bands in the mixture compared to the starting materials, while the OH stretching are blue shifted by a few cm-1. Consistently, molecular dynamics provides a picture of the mixture in which part of the hydrogen bonds (HB) of pure octanol is replaced by weaker HB formed with the Br anion. Due to these interactions the ionic couple becomes more separated. In agreement with this model, the lengths of all HB are much larger than those observed in mixtures containing acids reported in previous studies.
Collapse
Affiliation(s)
- Simone Di Muzio
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Trequattrini
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Oriele Palumbo
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pascale Roy
- Synchrotron Soleil, L'Orme des Merisier, 91190, Saint-Aubin, France
| | | | - Annalisa Paolone
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
2
|
Di Muzio S, Palumbo O, Trequattrini F, Paolone A. Binary Mixtures of Choline Acetate and Tetrabutylammonium Acetate with Natural Organic Acids by Vibrational Spectroscopy and Molecular Dynamics Simulations. J Phys Chem B 2024; 128:857-870. [PMID: 38224560 DOI: 10.1021/acs.jpcb.3c06407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We present a study of several mixtures obtained by the mixing of two organic acetate-based salts (choline acetate, ChAc, or tetrabutylammonium acetate, TBAAc) with three different natural organic acids (ascorbic acid, AA, citric acid, CA, and maleic acid, MA). The structures of the starting materials and of the mixtures were characterized by infrared spectroscopy (FT-IR) and classic molecular dynamics simulations (MD). The thermal behavior was characterized by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The obtained mixtures, especially the ChAc-based ones, strongly tend to vitrify at low temperatures and are stable up to 100-150 °C. The FTIR measurements suggest the formation of a strong H-bond network: the coordination between acids and ChAc or TBAAc takes place by the donation of the H-bond by the acids to the oxygen of the acetate anion, which acts as an acceptor (HBA). The comparison with MD analysis indicates that acids predominantly exploit their more acidic hydrogens. In particular, we observe the progressive shift of νC═O and νOH when the ratios of acids increase. The structural differences between the two studied cations influence the spatial distribution of the components in the mixture bulk phases. In particular, the analysis of the theoretical structure function I(q) of the TBAAc-based systems shows the presence of important prepeaks at low q, a sign of the formation of apolar domain, due to the nanosegregation of the alkyl chains.
Collapse
Affiliation(s)
- Simone Di Muzio
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, P.le Aldo Moro 5, 00185 Rome, Italy
- Department of Physical and Chemical Science, University of L'Aquila, Via Vetoio 1, 67100 L'Aquila, Italy
| | - Oriele Palumbo
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Trequattrini
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, P.le Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Annalisa Paolone
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Antenucci A, Bonomo M, Ghinato S, Blangetti M, Dughera S. Design of a New Chiral Deep Eutectic Solvent Based on 3-Amino-1,2-propanediol and Its Application in Organolithium Chemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238566. [PMID: 36500673 PMCID: PMC9738533 DOI: 10.3390/molecules27238566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
A chiral glycerol derivative, namely 3-amino-1,2-propanediol, was employed for as the hydrogen bond donor (HBD) in the design of a new deep eutectic solvent (DES) with choline chloride acting as the hydrogen bond acceptor (HBA). The novel mixture was characterized and unambiguously classified as a DES. Furthermore, its synthetic usefulness was demonstrated in the room-temperature n-butyllithium-addition under air to carbonyl compounds and benzyl chloride. In some cases, pure products (100% conversion) were obtained by a simple extractive work-up in up to 72% isolated yield, thus suggesting the potential practical usefulness of this procedure as a green alternative to the classical Schenk procedure in volatile organic solvents for the synthesis of tertiary alcohols. The chirality of the HBD, bearing an interesting basic primary amino group, is an intriguing feature currently under investigation for further exploitation.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Centro Ricerche per la Chimica Fine s.r.l. for Silvateam s.p.a., Via Torre 7, 12080 San Michele Mondovì, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| | - Matteo Bonomo
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, Università degli Studi di Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| | - Simone Ghinato
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Marco Blangetti
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Stefano Dughera
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| |
Collapse
|
4
|
Ghigo G, Bonomo M, Antenucci A, Damin A, Dughera S. Ullmann homocoupling of arenediazonium salts in a deep eutectic solvent. Synthetic and mechanistic aspects. RSC Adv 2022; 12:26640-26647. [PMID: 36275154 PMCID: PMC9487193 DOI: 10.1039/d2ra05272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
A deep eutectic solvent (DES) based on glycerol and KF is successfully exploited as a solvent medium in Ullmann homocoupling of arenediazonium salts. The reactions were carried out in mild conditions and target products were obtained in fairly good yields. A computational study is presented aiming to understand the reaction mechanism and Raman spectroscopy is employed as an experimental tool to support it.
Collapse
Affiliation(s)
- Giovanni Ghigo
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Matteo Bonomo
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin Via Gioacchino Quarello 15/a 10125 Turin Italy
| | - Achille Antenucci
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Alessandro Damin
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin Via Gioacchino Quarello 15/a 10125 Turin Italy
| | - Stefano Dughera
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| |
Collapse
|
5
|
Abstract
Arenediazonium o-benzenedisulfonimides have been used as efficient electrophilic partners in Cu(I) catalysed Ullmann-type coupling. The synthetic protocols are mild and easy, and produced either N-alkylanilines, aryl ethers, or thioethers in fairly good yields (18 positive examples, average yield 66%). o-Benzenedisulfonimide was recovered at the end of the reactions and was reused to prepare the starting salts for further reactions. It is noteworthy that diazonium salts have been used as electrophilic partners in the Ullmann-type protocol for the first time.
Collapse
|
6
|
Efremova MM, Rostovskii NV. The VIth International Symposium “The Chemistry of Diazo Compounds and Related Systems” (DIAZO 2021). RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gontrani L, Tagliatesta P, Donia DT, Bauer EM, Bonomo M, Carbone M. Recent Advances in the Synthesis of Inorganic Materials Using Environmentally Friendly Media. Molecules 2022; 27:2045. [PMID: 35408444 PMCID: PMC9000861 DOI: 10.3390/molecules27072045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Deep Eutectic Solvents have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness. One of the fields where DES prove to be particularly valuable is the synthesis and modification of inorganic materials-in particular, nanoparticles. In this field, the inherent structural inhomogeneity of DES results in a marked templating effect, which has led to an increasing number of studies focusing on exploiting these new reaction media to prepare nanomaterials. This review aims to provide a summary of the numerous and most recent achievements made in this area, reporting several examples of the newest mixtures obtained by mixing molecules originating from natural feedstocks, as well as linking them to the more consolidated methods that use "classical" DES, such as reline.
Collapse
Affiliation(s)
- Lorenzo Gontrani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
- Department of Chemistry, University of Rome “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Domenica Tommasa Donia
- Department of Surgical Science, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elvira Maria Bauer
- Italian National Research Council-Institute of Structure of Matter (CNR-ISM), Via Salaria km 29.3, 00015 Monterotondo, Italy;
| | - Matteo Bonomo
- Department of Chemistry, University of Rome “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy;
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| |
Collapse
|
8
|
Copper-Free Halodediazoniation of Arenediazonium Tetrafluoroborates in Deep Eutectic Solvents-like Mixtures. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061909. [PMID: 35335275 PMCID: PMC8950527 DOI: 10.3390/molecules27061909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
Deep Eutectic Solvent (DES)-like mixtures, based on glycerol and different halide organic and inorganic salts, are successfully exploited as new media in copper-free halodediazoniation of arenediazonium salts. The reactions are carried out in absence of metal-based catalysts, at room temperature and in a short time. Pure target products are obtained without the need for chromatographic separation. The solvents are fully characterized, and a computational study is presented aiming to understand the reaction mechanism.
Collapse
|
9
|
Antenucci A, Messina M, Bertolone M, Bella M, Carlone A, Salvio R, Dughera S. Turning Renewable Feedstocks into a Valuable and Efficient Chiral Phosphate Salt Catalyst. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Achille Antenucci
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Turin Italy
- NIS Interdepartmental Centre Reference Centre for INSTM University of Turin Via Gioacchino Quarello 15/A 10135 Turin Italy
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Monica Messina
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | | | - Marco Bella
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Armando Carlone
- Department of Physical and Chemical Sciences University of L'Aquila via Vetoio 67100 L'Aquila Italy
| | - Riccardo Salvio
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
- Department Chemical Sciences and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 1 00133 Rome Italy
- CNR Institute for Biological Systems Rome Headquarter- Reaction Mechanisms Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Stefano Dughera
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Turin Italy
| |
Collapse
|