1
|
Balamut B, Hughes RP, Aprahamian I. Tuning the Properties of Hydrazone/Isosorbide-Based Switchable Chiral Dopants. J Am Chem Soc 2024; 146:24561-24569. [PMID: 39163573 DOI: 10.1021/jacs.4c07848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The long-range supramolecular interactions in liquid crystals (LCs) can be used to amplify and subsequently propagate microscopic structural changes into macroscopic events. Here, we report on a systematic structure-property analysis using 16 chiral photoswitchable dopants composed of bistable hydrazones and chiral isosorbide moieties. Our findings showcase the relationship between the dopant's structure and its helical twisting power (β), and hence, the photophysical properties of the host LC. We show that an increase in the hydrazone CNNH dihedral angle results in an increase in the β value, while alkoxy chains do not lead to such an increase. These results contradict established rules of thumb, stating that structural rigidity and long alky chains are needed for high β values. We also found that the position of the substitution, whether at the 2' or 5' positions of the isosorbide unit, or the attachment of the chiral unit to the rotor or stator phenyl units can have negative or positive additive effects that can either increase or decrease the β values. These results made us hypothesize that unsymmetrically functionalized dopants should result in large Δβ values, which we corroborated experimentally. Moreover, a fluorine-functionalized dopant resulted in higher overall β values, most likely because of π-π interactions. Finally, the dopants were used in modulating and locking in the reflective properties of LC films, yielding multicolor LC canvases that can reflect light from the ultraviolet to the infrared range (i.e., a manipulation of up to ca. 1500 nm of reflected light).
Collapse
Affiliation(s)
- Brandon Balamut
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Qu C, Wang Q, Zhang X, Sun J, Xu M, Huang Y, Liu Y. Excellent ultraviolet-blocking properties of chiral nematic liquid crystals. Photochem Photobiol 2024; 100:33-40. [PMID: 37051777 DOI: 10.1111/php.13810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
We report the evaluation of chiral nematic liquid crystal (CNLC) in blocking ultraviolet (UV). The CNLC was coated on a calcium fluoride substrate to measure the spectral transmittance, which was measured to detect the UV-blocking effect of CNLC. The results show that CNLC could reduce UVB (290-320 nm) by 99.9% and UVA (320-400 nm) by 95.6%. The barrier effect of cake-shaped semi-solidified CNLC microspheres was further investigated, and it was found that cake-shaped semi-solidified CNLC microspheres could reduce UVB by 58.2% and UVA by 34.1%. This is due to the chemical absorption property of CNLC, which has UV-absorbing functional groups such as the benzene rings. And the physical reflection properties of CNLC could periodically reflect a certain wavelength of light. Liquid crystal (LC) is a rich set of soft materials with rod-like structures widely existing in nature, which is harmless to the human body and environment. Therefore, using CNLC's function of blocking UV, a new sunscreen can be developed.
Collapse
Affiliation(s)
- Chaofeng Qu
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, China
| | - Qingxiu Wang
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, China
| | | | - Jing Sun
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, China
| | - Minxing Xu
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, China
| | - Yu Huang
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, China
| | - Yongjun Liu
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, China
| |
Collapse
|
3
|
Wei Q, Lv P, Zhang Y, Zhang J, Qin Z, de Haan LT, Chen J, Wang D, Xu BB, Broer DJ, Zhou G, Ding L, Zhao W. Facile Stratification-Enabled Emergent Hyper-Reflectivity in Cholesteric Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57235-57243. [PMID: 36520981 DOI: 10.1021/acsami.2c16938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cholesteric liquid crystals (CLCs) are chiral photonic materials with selective reflection in terms of wavelength and polarization. Helix engineering is often required in order to produce desired properties for CLC materials to be employed for beam steering, light diffraction, scattering, and adaptive or broadband reflection. Here, we demonstrate a novel photopolymerization-enforced stratification (PES)-based strategy to realize helix engineering in a chiral CLC system with initially one handedness of molecular rotation throughout the layer. PES plays a crucial role in driving the chiral dopant bundle consisting of two chiral dopants of opposite handedness to spontaneously phase separate and create a CLC bilayer structure that reflects left- and right-handed circularly polarized light (CPL). The initially hidden chiral information therefore becomes explicit, and hyper-reflectivity, i.e., reflecting both left- and right-handed CPL, successfully emerges from the designed CLC mixture. The PES mechanism can be applied to structure a wide range of liquid crystal (LC) and polymer materials. Moreover, the engineering strategy enables facile programming of the center wavelength of hyper-reflection, patterning, and incorporating stimuli-responsiveness in the optical device. Hence, the engineered hyper-reflective CLCs offer great promise for future applications, such as digital displays, lasing, optical storage, and smart windows.
Collapse
Affiliation(s)
- Qunmei Wei
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
| | - Pengrong Lv
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Yang Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiwen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
| | - Zhuofan Qin
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Laurens T de Haan
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawen Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Ding Wang
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Dirk J Broer
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen 518110, P. R. China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Zhao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|