1
|
Shin DC, Cho JH, Ud Din F, Jin SG, Choi HG. Novel Fimasartan Fluidized Solid Dispersion and Its Tablet: Preparation, Crystallinity, Solubility, Dissolution, and Pharmacokinetics in Beagle Dogs. Eur J Drug Metab Pharmacokinet 2024; 49:723-732. [PMID: 39405004 DOI: 10.1007/s13318-024-00919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND AND OBJECTIVES Fimasartan, an angiotensin II receptor antagonist, exhibits low bioavailability due to its poor solubility; consequently, using solubilization technologies is essential to improve its bioavailability. In this study, novel fimasartan fluidized solid dispersion (FFSD) was developed using a fluid bed granulator to enhance the drug solubility and oral bioavailability. METHODS An appropriate FFSD was prepared in 50% ethanol using a fluid bed granulator, and its drug dissolution, morphology, and crystallinity were evaluated in comparison to the powdered drug. Moreover, the dissolution in various pH conditions and pharmacokinetics of the FFSD tablet in beagle dogs were investigated compared to the commercial fimasartan tablet. RESULTS Among the hydrophilic polymers tested, hydroxypropyl methylcellulose (HPMC) showed the highest solubility. The FFSD, composed of fimasartan, HPMC, and microcrystalline cellulose at the weight ratio of 20:10:25, gave a granular aggregation of several particles with a smooth surface. The drug in this FFSD existed as an amorphous state, leading to a greatly increased drug dissolution. The FFSD tablet was prepared by compressing a mixture of FFSD, mannitol, croscarmellose sodium, and magnesium stearate at the weight ratio of 55:40:5:1. The FFSD tablet gave significantly higher drug dissolution, plasma concentrations, maximum plasma concentration (Cmax) and area under the whole blood concentration-time curve (AUC) values than did the commercial fimasartan tablet. In the beagle dogs, the FFSD tablet (140.39 ± 27.40 ng·h/ml) had about a 1.7-fold higher AUC than the commercial fimasartan tablet (80.58 ± 22.18 ng·h/ml), indicating an enhancement in the bioavailability. CONCLUSIONS This novel FFSD tablet could be a potential oral pharmaceutical product with the improved oral bioavailability of fimasartan.
Collapse
Affiliation(s)
- Dong Chul Shin
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| | - Jung Hyun Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, South Korea
| | - Fakhar Ud Din
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea.
| |
Collapse
|
2
|
Cheon S, Kim JS, Woo MR, Ji SH, Park S, Ud Din F, Kim JO, Youn YS, Oh KT, Lim SJ, Jin SG, Chung JE, Choi HG. Establishment of nanoparticle screening technique: A pivotal role of sodium carboxymethylcellulose in enhancing oral bioavailability of poorly water-soluble aceclofenac. Int J Biol Macromol 2024; 277:134246. [PMID: 39098461 DOI: 10.1016/j.ijbiomac.2024.134246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
A novel nanoparticle screening technique was established to mostly enhance the aqueous solubility and oral bioavailability of aceclofenac using nanoparticle systems. Among the polymers investigated, sodium carboxymethylcellulose (Na-CMC) showed the greatest increase in drug solubility. Utilizing spray-drying technique, the solvent-evaporated solid dispersion (SESD), surface-attached solid dispersion (SASD), and solvent-wetted solid dispersion (SWSD) were prepared using aceclofenac and Na-CMC at a weight ratio of 1:1 in 50 % ethanol, distilled water, and ethanol, respectively. Using Na-CMC as a solid carrier, an aceclofenac-loaded liquid self-emulsifying drug delivery system was spray-dried and fluid-bed granulated together with microcrystalline cellulose, producing a solid self-nanoemulsifying drug delivery system (SNEDDS) and solid self-nanoemulsifying granule system (SNEGS), respectively. Their physicochemical properties and preclinical assessments in rats were performed. All nanoparticles exhibited very different properties, including morphology, crystallinity, and size. As a result, they significantly enhanced the solubility, dissolution, and oral bioavailability in the following order: SNEDDS ≥ SNEGS > SESD ≥ SASD ≥ SWSD. Based on our screening technique, the SNEDDS was selected as the optimal nanoparticle with the highest bioavailability of aceclofenac. Thus, our nanoparticle screening technique should be an excellent guideline for solubilization research to improve the solubility and bioavailability of many poorly water-soluble bioactive materials.
Collapse
Affiliation(s)
- Seunghyun Cheon
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Sang Hun Ji
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan 38541, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, South Korea.
| | - Jee-Eun Chung
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
3
|
Woo MR, Woo S, Bak YW, Cheon S, Kim JS, Ji SH, Park S, Kim JO, Jin SG, Choi HG. Comparison of two self-nanoemulsifying drug delivery systems using different solidification techniques for enhanced solubility and oral bioavailability of poorly water-soluble celecoxib. Colloids Surf B Biointerfaces 2024; 241:114044. [PMID: 38964274 DOI: 10.1016/j.colsurfb.2024.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
In this study, we aimed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) and a solid self-nanoemulsifying granule system (S-SNEGS) to enhance the solubility and oral bioavailability of celecoxib. This process involved the preparation of a liquid SNEDDS (L-SNEDDS) and its subsequent solidification into a S-SNEDDS and a S-SNEGS. The L-SNEDDS consisted of celecoxib (drug), Captex® 355 (Captex; oil), Tween® 80 (Tween 80; surfactant) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS; cosurfactant) in a weight ratio of 3.5:25:60:15 to produce the smallest nanoemulsion droplet size. The S-SNEDDS and S-SNEGS were prepared with L-SNEDDS/Ca-silicate/Avicel PH 101 in a weight ratio of 103.5:50:0 using a spray dryer and 103.5:50:100 using a fluid bed granulator, respectively. We compared the two novel developed systems and celecoxib powder based on their solubility, dissolution rate, physicochemical properties, flow properties and oral bioavailability in rats. S-SNEGS showed a significant improvement in solubility and dissolution rate compared to S-SNEDDS and celecoxib powder. Both systems had been converted from crystalline drug to amorphous form. Furthermore, S-SNEGS exhibited a significantly reduced angle of repose, compressibility index and Hausner ratio than S-SNEDDS, suggesting that S-SNEGS was significantly superior in flow properties. Compared to S-SNEDDS and celecoxib powder, S-SNEGS increased the oral bioavailability (AUC value) in rats by 1.3 and 4.5-fold, respectively. Therefore, S-SNEGS wolud be recommended as a solid self-nanoemulsifying system suitable for poorly water-soluble celecoxib.
Collapse
Affiliation(s)
- Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Young-Woo Bak
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sang Hun Ji
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
4
|
Cho YS, Yoon H, Jin SG. Novel Saccharomyces cerevisiae-Loaded Polyvinylpyrrolidone/SiO 2 Nanofiber for Wound Dressing Prepared Using Electrospinning Method. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2903. [PMID: 38930272 PMCID: PMC11204701 DOI: 10.3390/ma17122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Electrospun nanofibers have been used as wound dressings to protect skin from infection and promote wound healing. In this study, we developed polyvinylpyrrolidone (PVP)/silicon dioxide (SD) composite nanofibers for the delivery of probiotic Saccharomyces cerevisiae (SC), which potentially aids in wound healing. PVP/SD composite nanofibers were optimized through electrospinning, and bead-free nanofibers with an average diameter of 624.7 ± 99.6 nm were fabricated. Next, SC, a wound-healing material, was loaded onto the PVP/SD composite nanofibers. SC was encapsulated in nanofibers, and nanofibers were prepared using SC, PVP, SD, water, and ethanol in a ratio of 3:4:0.1:4.8:1.2. The formation of smooth nanofibers with protrusions around SC was confirmed using SEM. Nanofiber dressing properties were physicochemically and mechanically characterized by evaluating SEM, DSC, XRD, and FTIR images, tensile strength, and elongation at break. Additionally, a release test of active substances was performed. The absence of interactions between SC, PVP, and SD was confirmed through physicochemical evaluation, and SEM images showed that the nanofiber dressing contained SC and had a porous structure. It also showed a 100% release of SC within 30 min. Overall, our study showed that SC-loaded PVP/SD composite nanofibers prepared using the electrospinning method are promising wound dressings.
Collapse
Affiliation(s)
| | | | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Kim JS, Din FU, Cho HJ, Choi YJ, Woo MR, Cheon S, Ji SH, Park S, Youn YS, Oh KT, Lim SJ, Jin SG, Choi HG. Impact of carrier hydrophilicity on solid self nano-emulsifying drug delivery system and self nano-emulsifying granule system. Int J Pharm 2023; 648:123578. [PMID: 37931729 DOI: 10.1016/j.ijpharm.2023.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The purpose of this study was to investigate the impact of carrier hydrophilicity on solid self nano-emulsifying drug delivery system (SNEDDS) and self nano-emulsifying granule system (SEGS). The mesoporous calcium silicate (Ca-silicate) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were utilised as hydrophobic carrier and hydrophilic carrier, respectively. The liquid SNEDDS formulation, composed of Tween80/Kollipohr EL/corn oil (35/50/15%) with 31% (w/w) dexibuprofen, was spray-dried and fluid-bed granulated together with Avicel using Ca-silicate or HP- β-CD as a solid carrier, producing four different solid SNEDDS and SEGS formulations. Unlike the Ca-silicate-based systems, spherical shape and aggregated particles were shown in HP-β-CD-based solid SNEDDS and SEGS, respectively. Molecular interaction was detected between Ca-silicate and the drug; though, none was shown between HP-β-CD and the drug. Each system prepared with either carrier gave no significant differences in micromeritic properties, crystallinity, droplet morphology, size, dissolution and oral bioavailability in rats. However, the HP-β-CD-based system more significantly improved the drug solubility than did the Ca-silicate-based system. Therefore, both carriers hardly affected the properties of both solid SNEDDS and SEGS; though, there were differences in the aspect of appearance, molecular interaction and solubility.
Collapse
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Hyuk Jun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Yoo Jin Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sang Hun Ji
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440746, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul 156-756, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and biotechnology, Sejong University, Gunja-Dong, Seoul 143747, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
6
|
Choi MJ, Woo MR, Baek K, Park JH, Joung S, Choi YS, Choi HG, Jin SG. Enhanced Oral Bioavailability of Rivaroxaban-Loaded Microspheres by Optimizing the Polymer and Surfactant Based on Molecular Interaction Mechanisms. Mol Pharm 2023; 20:4153-4164. [PMID: 37433746 DOI: 10.1021/acs.molpharmaceut.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
This study aimed to develop microspheres using water-soluble carriers and surfactants to improve the solubility, dissolution, and oral bioavailability of rivaroxaban (RXB). RXB-loaded microspheres with optimal carrier (poly(vinylpyrrolidone) K30, PVP) and surfactant (sodium lauryl sulfate (SLS)) ratios were prepared. 1H NMR and Fourier transform infrared (FTIR) analyses showed that drug-excipient and excipient-excipient interactions affected RXB solubility, dissolution, and oral absorption. Therefore, molecular interactions between RXB, PVP, and SLS played an important role in improving RXB solubility, dissolution, and oral bioavailability. Formulations IV and VIII, containing optimized RXB/PVP/SLS ratios (1:0.25:2 and 1:1:2, w/w/w), had significantly improved solubility by approximately 160- and 86-fold, respectively, compared to RXB powder, with the final dissolution rates improved by approximately 4.5- and 3.4-fold, respectively, compared to those of RXB powder at 120 min. Moreover, the oral bioavailability of RXB was improved by 2.4- and 1.7-fold, respectively, compared to that of RXB powder. Formulation IV showed the highest improvement in oral bioavailability compared to RXB powder (AUC, 2400.8 ± 237.1 vs 1002.0 ± 82.3 h·ng/mL). Finally, the microspheres developed in this study successfully improved the solubility, dissolution rate, and bioavailability of RXB, suggesting that formulation optimization with the optimal drug-to-excipient ratio can lead to successful formulation development.
Collapse
Affiliation(s)
- Min-Jong Choi
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, South Korea
| | - Seewon Joung
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| |
Collapse
|
7
|
Arshad R, Arshad MS, Malik A, Alkholief M, Akhtar S, Tabish TA, Moghadam AA, Rahdar A, Díez-Pascual AM. Mannosylated preactivated hyaluronic acid-based nanostructures for bacterial infection treatment. Int J Biol Macromol 2023; 242:124741. [PMID: 37156311 DOI: 10.1016/j.ijbiomac.2023.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Salmonella Typhi is an intracellular bacterium causing a variety of enteric diseases, being typhoid fever the most common. Current modalities for treating S. typhi infection are subjected to multi-drug resistance. Herein, a novel macrophage targeting approach was developed via coating bioinspired mannosylated preactivated hyaluronic acid (Man-PTHA) ligands on a self-nanoemulsifying drug delivery system (SNEDDS) loaded with the anti-bacterial drug ciprofloxacin (CIP). The shake flask method was used to determine the drug solubility in the different excipients (oil, surfactants and co-surfactants). Man-PTHA were characterized by physicochemical, in vitro, and in vivo parameters. The mean droplet size was 257 nm, with a PDI of 0.37 and zeta potential of -15 mV. In 72 h, 85 % of the drug was released in a sustained manner, and the entrapment efficiency was 95 %. Outstanding biocompatibility, mucoadhesion, muco-penetration, anti-bacterial action and hemocompatibility were observed. Intra-macrophage survival of S. typhi was minimal (1 %) with maximum nanoparticle uptake, as shown by their higher fluorescence intensity. Serum biochemistry evaluation showed no significant changes or toxicity, and histopathological evaluation confirmed the entero-protective nature of the bioinspired polymers. Overall, results confirm that Man-PTHA SNEDDS can be employed as novel and effective delivery systems for the therapeutic management of S. typhi infection.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan.
| | | | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA.
| | - Tanveer A Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, 28805 Madrid, Spain.
| |
Collapse
|
8
|
Jin C, Wu F, Hong Y, Shen L, Lin X, Zhao L, Feng Y. Updates on applications of low-viscosity grade Hydroxypropyl methylcellulose in coprocessing for improvement of physical properties of pharmaceutical powders. Carbohydr Polym 2023; 311:120731. [PMID: 37028868 DOI: 10.1016/j.carbpol.2023.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Hydroxypropyl methylcellulose (HPMC) is an important polymeric excipient. Its versatility in terms of molecular weights and viscosity grades is the basis for its wide and successful application in the pharmaceutical industry. Low viscosity grades of HPMC (like E3 and E5) have been used as physical modifiers for pharmaceutical powders in recent years due to their unique physicochemical and biological properties (e.g., low surface tension, high Tg, strong hydrogen bonding ability, etc.). Such modification is the co-processing of HPMC with a drug/excipient to create composite particles (CPs) for the purpose of providing synergistic effects of functional improvement as well as of masking undesirable properties of the powder (e.g., flowability, compressibility, compactibility, solubility, stability, etc.). Therefore, given its irreplaceability and tremendous opportunities for future developments, this review summarized and updated studies on improving the functional properties of drugs and/or excipients by forming CPs with low-viscosity HPMC, analyzed and exploited the improvement mechanisms (e.g., improved surface properties, increased polarity, hydrogen bonding, etc.) for the further development of novel co-processed pharmaceutical powders containing HPMC. It also provides an outlook on the future applications of HPMC, aiming to provide a reference on the crucial role of HPMC in various areas for interested readers.
Collapse
|
9
|
Suk Kim J, ud Din F, Jin Choi Y, Ran Woo M, Cheon S, Hun Ji S, Park S, Oh Kim J, Seok Youn Y, Lim SJ, Giu Jin S, Choi HG. Hydroxypropyl-β-cyclodextrin-based solid dispersed granules: A prospective alternative to conventional solid dispersion. Int J Pharm 2022; 628:122286. [DOI: 10.1016/j.ijpharm.2022.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
10
|
Effects of Polymers on the Drug Solubility and Dissolution Enhancement of Poorly Water-Soluble Rivaroxaban. Int J Mol Sci 2022; 23:ijms23169491. [PMID: 36012748 PMCID: PMC9409000 DOI: 10.3390/ijms23169491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was to investigate the efficacy of hydrophilic polymers in a solid dispersion formulation in improving the solubility and dissolution rate of rivaroxaban (RXB), a poorly soluble drug. The developed solid dispersion consisted of two components, a drug and a polymer, and the drug was dispersed as amorphous particles in a polymer matrix using the spray drying method. Polymeric solid dispersions were evaluated using solubility tests, in vitro dissolution tests, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and particle size distribution analysis. To maximize physical stability against crystallization and improve the solubility and dissolution of RXB, it is important to select the appropriate polymer type and the optimal ratio of the polymer to the drug. The optimized polyvinyl alcohol (PVA)-based (1/0.5, w/w) and gelatin-based (1/5, w/w) solid dispersion formulations showed 6.3 and 3.6 times higher drug solubilities than pure RXB powder, respectively, and the final dissolution rate was improved by approximately 1.5 times. Scanning electron microscopy and particle size distribution analyses confirmed that the gelatin-based solid dispersion was smaller and more spherical than the PVA-based solid dispersion, suggesting that the gelatin-based solid dispersion had a faster initial dissolution rate. Differential scanning calorimetry and powder X-ray diffraction analyses confirmed that RXB had successfully changed from a crystalline form to an amorphous form, contributing to the improvement in its solubility and dissolution rate. This study provides a strategy for selecting suitable polymers for the development of amorphous polymer solid dispersions that can overcome precipitation during dissolution and stabilization of the amorphous state. In addition, the selected polymer solid dispersion improved the drug solubility and dissolution rate of RXB, a poorly soluble drug, and may be used as a promising drug delivery system.
Collapse
|
11
|
Development of Alectinib-Suspended SNEDDS for Enhanced Solubility and Dissolution. Pharmaceutics 2022; 14:pharmaceutics14081694. [PMID: 36015320 PMCID: PMC9413510 DOI: 10.3390/pharmaceutics14081694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/13/2022] Open
Abstract
Alectinib hydrochloride (ALH), a tyrosine kinase inhibitor, is a practically water-insoluble drug classified as BCS class IV. The present study aimed to develop novel suspended self-nanoemulsifying drug delivery system (Su-SNEDDS) to enhance the solubility and dissolution rate. The Su-SNEDDS was prepared by saturation and suspension of ALH in SNEDDS with ultrasonication energy. According to evaluation by the dispersion test and the results of particle size analysis, the selected SNEDDS composed of Kolliphor HS 15 and Capmul MCM C8 as surfactant and oil, respectively, showed a complete dissolution within 30 min. However, the SNEDDS loaded and solubilized only small amount of ALH (<0.6%, w/w). On the other hand, 10% ALH-loaded Su-SNEDDS containing small and micronized ALH particles of <5 μm had about 20-fold higher ALH-loading% than the SNEDDS and reached a 100% dissolution rate within 30 min in 1% sodium lauryl sulfate (SLS) pH 1.2 buffer. In the dispersion test and microscopic observation, micronized ALH particles in the Su-SNEDDS were readily dispersed in the dissolution medium with spontaneous nanoemulsion formation and instantly solubilized with the aid of SLS. Taken together, our results suggest that the Su-SNEDDS would be a potent oral dosage form to enhance the solubilization and dissolution rate of ALH in a new technological way.
Collapse
|
12
|
Han AS, Kim J, Park JW, Jin SG. Novel acyclovir-loaded film-forming gel with enhanced mechanical properties and skin permeability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Kim JS, Din FU, Lee SM, Kim DS, Woo MR, Cheon S, Ji SH, Kim JO, Youn YS, Oh KT, Lim SJ, Jin SG, Choi HG. Comparison of Three Different Aqueous Microenvironments for Enhancing Oral Bioavailability of Sildenafil: Solid Self-Nanoemulsifying Drug Delivery System, Amorphous Microspheres and Crystalline Microspheres. Int J Nanomedicine 2021; 16:5797-5810. [PMID: 34465992 PMCID: PMC8402991 DOI: 10.2147/ijn.s324206] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background The purpose of this study was to screen various drug delivery systems for improving the aqueous solubility and oral bioavailability of sildenafil. Three representative techniques, solid self-nanoemulsifying drug delivery systems (SNEDDS), amorphous microspheres and crystalline microspheres, were compared. Methods Both microspheres systems contained sildenafil:Labrasol:PVP at a weight ratio of 1:1:6. The amorphous microspheres were manufactured using ethanol, while crystalline microspheres were generated using distilled water. Liquid SNEDDS was composed of sildenafil:Labrasol:Transcutol HP:Captex 300 in the ratio of 1:70:15:15 (w:w:w:w). The solidification process in SNEDDS was performed using HDK N20 Pharma as a solid carrier. Results The amorphous microspheres appeared spherical with significantly decreased particle size compared to the drug powder. The crystalline microspheres exhibited a rough surface with no major particle-size difference compared with sildenafil powder, indicating that the hydrophilic excipients adhered to the sildenafil crystal. Solid SNEDDS presented a smooth surface, assuming that the oily liquid was adsorbed to the porous solid carrier. According to the physicochemical evaluation, the crystalline state maintained in crystalline microspheres, whereas the crystal state changed to amorphous state in other formulations. Amorphous microspheres, crystalline microspheres and solid SNEDDS produced about 79, 55, 82-fold increased solubility, compared to drug powder. Moreover, the prepared formulations provided a higher dissolution rate (%) and plasma concentration than did the drug powder (performance order; solid SNEDDS ≥ amorphous microspheres ≥ crystalline microspheres > drug powder). Among the formulations, solid SNEDDS demonstrated the highest improvement in oral bioavailability (AUC; 1508.78 ± 343.95 h·ng/mL). Conclusion Therefore, solid SNEDDS could be recommended as an oral dosage form for enhancing the oral bioavailability of sildenafil.
Collapse
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sang Min Lee
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | | | - Sang Hun Ji
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and biotechnology, Sejong University, Seoul, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, South Korea
| |
Collapse
|