1
|
Esfandiari N, Saadati Ardestani N, Alwi RS, Rojas A, Garlapati C, Sajadian SA. Solubility measurement of verapamil for the preparation of developed nanomedicines using supercritical fluid. Sci Rep 2023; 13:17089. [PMID: 37816767 PMCID: PMC10564778 DOI: 10.1038/s41598-023-44280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
A static method is employed to determine the solubilities of verapamil in supercritical carbon dioxide (SC-CO2) at temperatures between 308 and 338 K and pressures between 12 and 30 MPa. The solubility of verapamil in SC-CO2 expressed as mole fraction are in the range of 3.6 × 10-6 to 7.14 × 10-5. Using four semi-empirical density-based models, the solubility data are correlated: Chrastil, Bartle, Kumar-Johnston (K-J), and Mendez-Santiago and Teja (MST), two equations of state (SRK and PC-SAFT EoS), expanded liquid models (modified Wilson's models), and regular solution model. The obtained results indicated that the regular solution and PC-SAFT models showed the most noteworthy exactness with AARD% of 1.68 and 7.45, respectively. The total heat, vaporization heat, and solvation heat of verapamil are calculated at 39.62, 60.03, and - 20.41 kJ/mol, respectively. Regarding the poor solubility of verapamil in SC-CO2, supercritical anti-solvent methods can be an appropriate choice to produce fine particles of this drug.
Collapse
Affiliation(s)
- Nadia Esfandiari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Nedasadat Saadati Ardestani
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 14857-336, Tehran, Iran
| | - Ratna Surya Alwi
- National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM 46, Cibinong, Indonesia
| | - Adrián Rojas
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124, Santiago, Chile
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, 9170201, Santiago, Chile
| | - Chandrasekhar Garlapati
- Department of Chemical Engineering, Pondicherry Technological University, Puducherry, 605014, India.
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
- South Zagros Oil and Gas Production, National Iranian Oil Company, Postal Code, Shiraz, 7135717991, Iran.
| |
Collapse
|
2
|
Bhanushali JS, Bharate SS. Estimating thermodynamic equilibrium solubility and solute-solvent interactions of niclosamide in eight mono-solvents at different temperatures. J Mol Liq 2022; 367:120359. [PMID: 36128020 PMCID: PMC9477609 DOI: 10.1016/j.molliq.2022.120359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/06/2022] [Accepted: 09/10/2022] [Indexed: 12/05/2022]
Abstract
Niclosamide is an FDA-approved oral anthelmintic drug currently being repurposed for COVID-19 infection. Its interesting applicability in multiple therapeutic indications has sparked interest in this drug/ scaffold. Despite its therapeutic use for several years, its detailed solubility information from Chemistry Manufacturing & Controls perspective is unavailable. Thus, the present study is intended to determine the mole fraction solubility of niclosamide in commonly used solvents and cosolvents at a temperature range of 298.15–323.15 K. The polymorphic changes from crystalline to monohydrate forms post-equilibration in various solvents were observed. The maximum mole fraction solubility of niclosamide at 323.15 K is 1.103 × 10-3 in PEG400, followed by PEG200 (5.272 × 10-4), 1-butanol (3.047 × 10-4), 2-propanol (2.42 × 10-4), ethanol (1.66 × 10-4), DMSO (1.52 × 10-4), methanol (7.78 × 10-5) and water (3.27 × 10-7). The molecular electrostatic potential showed a linear correlation with the solubility. PEG400 has higher electrostatic potential, and H-bond acceptor count, which forms a hydrogen bond with phenolic –OH of niclosamide and thus enhances its solubility. This data is valuable for the drug discovery and development teams working on the medicinal chemistry and process chemistry of this scaffold.
Collapse
Key Words
- ATChI, acetyl thiocholine iodide
- Chemistry manufacturing & controls
- DMSO, dimethyl sulfoxide
- DSC, differential scanning calorimetry
- DTNB, 5,5′-dithio-bis-[2-nitrobenzoic acid
- Drug discovery and lead optimization
- EeAChE, Electric eel acetylcholinesterase
- FDA, Food and Drug Administration
- IUPAC, International Union of Pure and Applied Chemistry
- Mole fraction solubility
- Niclosamide
- PEG200, propylene glycol 200
- PEG400, propylene glycol 400
- Process chemistry
- Thermodynamic solubility
Collapse
Affiliation(s)
- Jigar S Bhanushali
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| |
Collapse
|
3
|
Zhang P, Luo H, Cui L, Deng J, Xie S, Liu D, Wang S, Si X, Wang Z, Wan Y, Zhang E, Li X, Zhang L. Assessment of solid-liquid equilibrium behavior and thermodynamic analysis of natural plant extracts artemisinin (Form Ⅰ) in twelve mono-solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Xu R, Yao G. Solubility determination, hansen solubility parameter, solvent effect and preferential solvation of thenalidine in four aqueous binary mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Solubility of Lacosamide in supercritical carbon Dioxide: An experimental analysis and thermodynamic modeling. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Cong Y, Du C, Xing K, Bian Y, Li X, Wang M. Research on dissolution of actarit in aqueous mixtures: Solubility determination and correlation, preferential solvation, solvent effect and thermodynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Shah RP, Bharate SS. Thermodynamic solubility determination of khellin in eight mono-solvents at the range of 298.15 to 323.15 K. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Cong Y, Du C, Xing K, Bian Y, Li X, Wang M. Investigation on co-solvency, solvent effect, Hansen solubility parameter and preferential solvation of fenbufen dissolution and models correlation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|