1
|
Qiu S, Sun J, Gu X, Li H, Wang H, Zhang S. Polyvinyl Chloride-Based Luminescent Downshifting Film with High Flame Retardancy and Excellent UV Resistance for Silicon Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402488. [PMID: 38716752 DOI: 10.1002/smll.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Indexed: 10/04/2024]
Abstract
Solar power generation, as a clean energy source, has significant potential for development. This work reports the recent efforts to address the challenge of low power conversion efficiency in photovoltaic devices by proposing the fabrication of a luminescence downshifting layer using polyvinyl chloride (PVC) with added fluorescent dots to enhance light utilization. A photoluminescent microsphere (HCPAM) is synthesized by cross-linking hexachlorocyclotriphosphazene, 2-iminobenzimidazoline, and polyethyleneimine. Low addition of HCPAM can improve the fire safety of PVC films, raising the limiting oxygen index of PVC to 32.4% and reducing the total heat release and smoke production rate values by 14.5% and 42.9%, respectively. Additionally, modified PVC film remains a transparency of 88% and shows down-conversion light properties. When the PVC+1%HCPAM film is applied to the solar cell, the short-circuit current density increases from 42.3 to 43.8 mA cm-2, resulting in a 7.0% enhancement in power conversion efficiency. HCPAM also effectively delays the photooxidative aging of PVC, particularly at a 3% content, maintaining the surface morphology and optical properties of PVC samples during ultraviolet aging. This study offers an innovative strategy to enhance the fire and UV-resistant performance of PVC films and expand their applications in protecting and efficiently utilizing photovoltaic devices.
Collapse
Affiliation(s)
- Shuang Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haiqiao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22:169. [PMID: 37814270 PMCID: PMC10561438 DOI: 10.1186/s12943-023-01865-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran
| | | | | | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Devendra Pratap Rao
- Department of Chemistry, Coordination Chemistry Laboratory, Dayanand Anglo-Vedic (PG) College, Kanpur-208001, U.P, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező U. 15-17, 1084, Budapest, Hungary
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ayesha Amajd
- Faculty of Organization and Management, Silesian University of Technology, 44-100, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Polo II, 3030-788, Coimbra, Portugal
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | | | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Ahmad M, Nawaz T, Hussain I, Chen X, Imran M, Hussain R, Assiri MA, Ali S, Wu Z. Phosphazene Cyclomatrix Network-Based Polymer: Chemistry, Synthesis, and Applications. ACS OMEGA 2022; 7:28694-28707. [PMID: 36033672 PMCID: PMC9404196 DOI: 10.1021/acsomega.2c01573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Polyphosphazenes are an inorganic molecular hybrid family with multifunctional properties due to their wide range of organic substitutes. This review intends to propose the basics of the synthetic chemistry of polyphosphazene, describing for researchers outside the field the basic knowledge required to design and prepare polyphosphazenes with desired properties. A special emphasis is placed on recent advances in chemical synthesis, which allow not only the synthesis of polyphosphazenes with controlled molecular weights and polydispersities but also the synthesis of novel branched designs and block copolymers. We also investigated the synthesis of polyphosphazenes using various functional materials. This review aims to assist researchers in synthesizing their specific polyphosphazene material with unique property combinations, with the hope of stimulating further research and even more innovative applications for these highly interesting multifaceted materials.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Tehseen Nawaz
- Department
of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Iftikhar Hussain
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Xi Chen
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia
| | - Riaz Hussain
- Division
of Science and Technology, University of
Education, Lahore 54770, Pakistan
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia
| | - Shafqat Ali
- Department
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, P. R. China
| | - Zhanpeng Wu
- State
Key
Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|