1
|
Sun J, Cui C, Ma M, Gao L, Ross CA, Shi LY. Self-Assembly of Hierarchical Silicon-Containing Block Copolymers with Cross-Linkable 3 nm Smectic Motifs for Nanopatterning and Osmotic Energy Conversion Membranes. ACS NANO 2024; 18:28936-28945. [PMID: 39383046 DOI: 10.1021/acsnano.4c09266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Highly-dense small-feature-size nanopatterns and nanoporous membranes are important in advanced microelectronics, nanofiltration, and biomimic device manufacturing. Here, we report the synthesis and self-assembly of a series of high-interaction-parameter (high-χ) silicon-containing hierarchical block copolymers (BCPs) with cross-linkable subordering chalcone motifs, which possess both an intrinsic native etching contrast for nanofabrication and cross-linkability under ultraviolet light for generating free-standing membranes. BCPs with a volume fraction of chalcone block of 55-74% form ordered primary nanostructures with period 15-22 nm including lamellae, double gyroid, hexagonally packed cylinders, and body-centered cubic spheres of the minority Si-containing block. The majority PChMA block self-assembles into a highly ordered 3 nm smectic sublattice, and cross-linking after self-assembly enables the formation of free-standing isoporous membranes. Both silicon oxide nanopatterns and free-standing nanoporous osmotic energy conversion membranes are generated by etching films of these BCPs. This work demonstrates that the combination of hierarchical ordering and cross-linkable motifs in a high-interaction parameter BCP enables applications in both nanofabrication and free-standing functional porous membranes.
Collapse
Affiliation(s)
- Jingrui Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chang Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mingchao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Longcheng Gao
- Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Sardari N, Abdollahi A, Farokhi Yaychi M. Chameleon-like Photoluminescent Janus Nanoparticles as Full-Color Multicomponent Organic Nanoinks: Combination of Förster Resonance Energy Transfer and Photochromism for Encryption and Anticounterfeiting with Multilevel Authentication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035478 DOI: 10.1021/acsami.3c14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing the security by the multilevel authentication mechanism was the most significant challenge in recent years for the development of anticounterfeiting inks based on photoluminescent nanomaterials. For this purpose, the greatest strategy is the use of multicomponent organic materials and a combination of Förster resonance energy transfer (FRET) with the intelligent behavior of photochromic compounds like spiropyran. Here, the hydroxyl-functionalized polymer nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different compositions (0-30 wt % of HEMA). Results illustrated that the size of the nanoparticles changed from 64 to 204 nm, and a morphology evolution from spherical to Janus shape was observed by increasing the concentration of HEMA. Photoluminescent inks with red, green, and blue (RGB) fluorescence emissions were prepared by modification of nanoparticles containing 15 wt % of HEMA with spiropyran, fluorescein, and coumarin, respectively. To develop dual-color and multicolor photoluminescent inks that display static and dynamic emission, RGB latex samples were mixed together in different ratios and printed on cellulosic paper. Results display that the fluorescence emission of developed inks can be photoswitched between different statuses, including white to blue, green to blue, green to red/orange, purple to pink, and white to pink, utilizing the FRET phenomenon, photochromism, and a combination of both phenomena. Samples containing spiropyran displayed dynamic color changes in the emission to red, orange, and pink depending on the composition. Hence, developed dual-color and multicolor photoluminescent inks were used for printing of security tags and also painting of some hand-drawn artworks, which obtained results indicating high printability, maximum fluorescence intensity, high resolution, and fast responsivity upon UV-light irradiations of 254 nm (for static mode) and 365 nm (for dynamic mode). In addition, the multilevel authentication mechanism by a static emission under UV-light irradiation of 254 nm, a dynamic emission under UV-light irradiation of 365 nm, and photochromic color change was observed, resulting in increasing the security of developed inks. Actually, developed multicolor photoluminescent inks are the most efficient candidates for developing a new category of chameleon-like high-security anticounterfeiting inks that have tunable optical properties and complex multilevel authentication mechanisms.
Collapse
Affiliation(s)
- Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mojtaba Farokhi Yaychi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
3
|
Abdollahi A, Dashti A. Photosensing of Chain Polarity and Visualization of Latent Fingerprints by Amine-Functionalized Polymer Nanoparticles Containing Oxazolidine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Abdollahi A, Ghasemi B, Nikzaban S, Sardari N, Jorjeisi S, Dashti A. Dual-Color Photoluminescent Functionalized Nanoparticles for Static-Dynamic Anticounterfeiting and Encryption: First Collaboration of Spiropyran and Coumarin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7466-7484. [PMID: 36705276 DOI: 10.1021/acsami.2c22532] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Increasing the security of anticounterfeiting materials has been the most important challenge in recent years, and the development of dual-color photoluminescent inks with multi-level security, static/dynamic emission, and dynamic color change is an important solution to overcome this problem. In this study, the multi-functionalized copolymer nanoparticles containing different functional groups (with a concentration of 20 wt %), including ester, carboxylic acid, hydroxyl, epoxide, amide, and amine groups were synthesized successfully by the emulsion polymerization method. The results showed that the particle size and morphology of nanoparticles are affected by the polarity of functional groups. The prepared multi-functionalized copolymer nanoparticles were modified physically with spiropyran (photochromic and red fluorescence emission) and coumarin (cyan emission) derivatives to develop dual-color photoluminescent polymer nanoparticles with application in static-dynamic photoluminescent anticounterfeiting inks, which have multi-level security. The investigation of optical properties indicates that the kinetics of photochromism and photoluminescence properties of samples containing spiropyran is dependent on the local polarity on the surface of polymer nanoparticles. Hence, an increase in the polarity (functionalization with amide, carboxylic acid, and hydroxyl groups) has resulted in fast photochromism, high-intensity photoluminescence emission and increased the efficiency of the photoswitchable color change of emission from cyan to pink. Dual-color photoluminescent anticounterfeiting inks were prepared by mixing polymer nanoparticles containing spiropyran with polymer nanoparticles containing coumarin, in different ratios (1:1, 1:3, 1:5, 1:8, and 1:10). Obtained results showed that prepared samples have cyan emission under UV light of 254 nm (static mode), and a dynamic photoswitching of fluorescence emission from cyan to pink (as a function of irradiation time) was also observed under UV-light irradiation of 365 nm, which is well known as a dynamic mode of emission. The responsivity and intensity of dynamic photoluminescence emission are dependent on the local polarity of the surface functional groups, in which the samples based on amide functionalized copolymer nanoparticles displayed high-intensity emission in the static mode and high-intensity photoswitchable dual-color emission in the dynamic mode, in the case of all ratios of colloid solution mixtures. Printing security tags on cellulose paper by dual-color photoluminescent inks indicates advantages such as maximum printability, resolution, brightness, and static-dynamic photoluminescence emission with high intensity for inks based on amide functionalized nanoparticles. The static-dynamic dual-color photoluminescent anticounterfeiting ink with unique properties and multi-level security was reported for the first time by the collaboration of spiropyran and coumarin. This study can open a new approach and window to the future of advanced and high-security anticounterfeiting technologies.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Bita Ghasemi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad91779-48974, Iran
| | - Soma Nikzaban
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Saba Jorjeisi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Ali Dashti
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad91779-48974, Iran
| |
Collapse
|
5
|
Abdollahi A, Rahmanidoust M, Hanaei N, Dashti A. All-in-One Photoluminescent Janus Nanoparticles for Smart Technologies: Organic Light-Emitting Diodes, Anticounterfeiting, and Optical Sensors. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Photoluminescent Janus oxazolidine nanoparticles for development of organic light-emitting diodes, anticounterfeiting, information encryption, and optical detection of scratch. J Colloid Interface Sci 2023; 630:242-256. [DOI: 10.1016/j.jcis.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
|
7
|
Razavi B, Roghani-Mamaqani H, Salami-Kalajahi M. Stimuli-Responsive Dendritic Macromolecules for Optical Detection of Metal Ions and Acidic Vapors by the Photoinduced Electron Transfer Mechanism: Paper-Based Indicator for Food Spoilage Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41433-41446. [PMID: 36050933 DOI: 10.1021/acsami.2c12144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visual detection of analytes has been a significant challenge in the design and development of optical chemosensors. Sensing of analytes in aqueous solution by organic molecules has encountered some issues, such as poor water solubility and quenching of optical properties. In this study, a new category of smart dendritic macromolecules was designed and synthesized by functionalization of the poly(amidoamine) (PAMAM) dendrimer with spiropyran molecules to afford a photoluminescent dendritic structure (SP-PAMAM). Smart optical sensors were prepared by physical incorporation of four different oxazolidine derivatives containing hydroxyl and nitro substituted groups into the SP-PAMAM structure. Investigation of optical properties demonstrated photoinduced electron transfer (PET) between the spiropyran end group of SP-PAMAM and oxazolidine derivatives (in a concentration of about 0.0002 M), which can result in quenching of fluorescence emission of spiropyran photoswitch in the form of merocyanine (MC). Treatment of the oxazolidine-doped SP-PAMAM samples with metal ions resulted in changes in the PET mechanism (switching on or off), as observed in the case of Fe3+, Pb2+, Cu2+, Zn2+, Cd2+, Co2+, and Ni2+ by different oxazolidine derivatives through various mechanisms (increase or decrease of fluorescence emission). These smart photoluminescent dendritic macromolecules have potential applications for photodetection of metal ions in aqueous media as optical chemosensors. In addition, the smart macromolecules displayed disconnection of PET between MC and oxazolidine and also showed red fluorescence emission under acidic conditions (pH 1-5). It is due to the protonation of the MC to MCH form and demonstrates a remarkable red shift in fluorescence spectra. The pH-responsivity of smart macromolecules was used for designing a paper-based pH indicator for visual detection of spoilage in the food industry, especially in the case of milk. The prepared papers applied on cap of the milk bottles did not show any fluorescence emission in the case of fresh milk; however, a red fluorescence emission was observed after milk spoilage as a result of adsorption of acidic volatile components generated by bacterial degradation and oxidation process on the paper surface. The reported smart papers can serve as optical portable pH indicators for timely detection of spoilage in food materials, which are usable in food packaging as smart indicator tags.
Collapse
Affiliation(s)
- Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| |
Collapse
|