1
|
Erdoğan M, Başkan C, Serdaroğlu G. Substituted naphthoxy-phthalonitrile derivatives: Synthesis, substituent effects, DFT, TD-DFT Calculations, antimicrobial properties and DNA interaction studies. Comput Biol Chem 2023; 102:107798. [PMID: 36495747 DOI: 10.1016/j.compbiolchem.2022.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Herein, substituted-naphthol derivatives 4a-e were synthesized in two steps, namely the Diels Alder cycloaddition and Cu-catalyzed aromatization reactions, respectively. Then, pththalonitrile derivatives 7-12 have been prepared by a nucleophilic displacement reaction of 3-nitrophthalonitrile with the naphthol derivatives 4a-e, 5 and, obtained in excellent yields. Structural characterization of the compounds was identified by different spectroscopic techniques. Antimicrobial properties of the synthesized compounds were determined by the microdilution procedure against Gram-positive, Gram-negative bacteria, and yeast. Furthermore, the DNA interaction of the compounds were determined by gel electrophoresis. One of the most prominent findings is that compounds 9 and 10 have more inhibitory effects on Gram-positive bacteria than Gram-negative bacteria. These compounds especially exhibited the highest antibacterial potency against S. aureus (625 µg/mL) among Gram-positive bacteria. According to the plasmid DNA interaction results, the synthesized compounds caused changes in the structure and mobility of the plasmid DNA. Then, geometry optimizations and frequency calculations were conducted at B3LYP/6-311 G(d,p) level of DFT, and optimized structures were used for further analyses. The NBO results revealed that the π→π * and n→π * interactions were greatly contributed to lowering the stabilization energy of all compounds (7-12). FMO energy analyses showed that compound 9 has the biggest electrodonating power.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars 36100, Turkey.
| | - Ceren Başkan
- Sabuncuoğlu Şerefeddin Health Services, Vocational School, Amasya University, Amasya, Turkiye.
| | - Goncagül Serdaroğlu
- Sivas Cumhuriyet University, Faculty of Education, Math. and Sci. Edu., 58140 Sivas, Turkey.
| |
Collapse
|
2
|
Miyan L, Adam AMA, Refat MS, Alsuhaibani AM. 2-aminopyrimidine-oxalic acid liquid–liquid charge-transfer interactions: Synthesis, spectroscopic characterizations, and the effect of temperature. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Al-Hazmi GH, Hassanien A, Atta A, Refat MS, Saad HA, Shakya S, Adam AMA. Supramolecular charge-transfer complex generated by the interaction between tin(II) 2,3-naphtalocyanine as a donor with DDQ as an acceptor: Spectroscopic studies in solution state and theoretical calculations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Alsanie WF, Alamri AS, Alyami H, Alhomrani M, Shakya S, Habeeballah H, Alkhatabi HA, Felimban RI, Alzahrani AS, Alhabeeb AA, Raafat BM, Refat MS, Gaber A. Increasing the Efficacy of Seproxetine as an Antidepressant Using Charge-Transfer Complexes. Molecules 2022; 27:molecules27103290. [PMID: 35630766 PMCID: PMC9147639 DOI: 10.3390/molecules27103290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
The charge transfer interactions between the seproxetine (SRX) donor and π-electron acceptors [picric acid (PA), dinitrobenzene (DNB), p-nitrobenzoic acid (p-NBA), 2,6-dichloroquinone-4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), and 7,7′,8,8′-tetracyanoquinodi methane (TCNQ)] were studied in a liquid medium, and the solid form was isolated and characterized. The spectrophotometric analysis confirmed that the charge–transfer interactions between the electrons of the donor and acceptors were 1:1 (SRX: π-acceptor). To study the comparative interactions between SRX and the other π-electron acceptors, molecular docking calculations were performed between SRX and the charge transfer (CT) complexes against three receptors (serotonin, dopamine, and TrkB kinase receptor). According to molecular docking, the CT complex [(SRX)(TCNQ)] binds with all three receptors more efficiently than SRX alone, and [(SRX)(TCNQ)]-dopamine (CTcD) has the highest binding energy value. The results of AutoDock Vina revealed that the molecular dynamics simulation of the 100 ns run revealed that both the SRX-dopamine and CTcD complexes had a stable conformation; however, the CTcD complex was more stable. The optimized structure of the CT complexes was obtained using density functional theory (B-3LYP/6-311G++) and was compared.
Collapse
Affiliation(s)
- Walaa F. Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (W.F.A.); (A.S.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia;
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (W.F.A.); (A.S.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia;
| | - Hussain Alyami
- College of Medicine, Taif University, Taif 21944, Saudi Arabia;
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (W.F.A.); (A.S.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia;
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Hamza Habeeballah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (R.I.F.)
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed I. Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (R.I.F.)
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed S. Alzahrani
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia;
| | | | - Bassem M. Raafat
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Moamen S. Refat
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
- Correspondence: (M.S.R.); (A.G.)
| | - Ahmed Gaber
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia;
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
- Correspondence: (M.S.R.); (A.G.)
| |
Collapse
|
7
|
Enhancing the Antipsychotic Effect of Risperidone by Increasing Its Binding Affinity to Serotonin Receptor via Picric Acid: A Molecular Dynamics Simulation. Pharmaceuticals (Basel) 2022; 15:ph15030285. [PMID: 35337083 PMCID: PMC8952232 DOI: 10.3390/ph15030285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to assess the utility of inexpensive techniques in evaluating the interactions of risperidone (Ris) with different traditional -acceptors, with subsequent application of the findings into a Ris pharmaceutical formulation with improved therapeutic properties. Molecular docking calculations were performed using Ris and its different charge-transfer complexes (CT) with picric acid (PA), 2,3-dichloro-5,6-dicyanop-benzoquinon (DDQ), tetracyanoquinodimethane (TCNQ), tetracyano ethylene (TCNE), tetrabromo-pquinon (BL), and tetrachloro-p-quinon (CL), as donors, and three receptors (serotonin, dopamine, and adrenergic) as acceptors to study the comparative interactions among them. To refine the docking results and further investigate the molecular processes of receptor–ligand interactions, a molecular dynamics simulation was run with output obtained from AutoDock Vina. Among all investigated complexes, the [(Ris) (PA)]-serotonin (CTcS) complex showed the highest binding energy. Molecular dynamics simulation of the 100 ns run revealed that both the Ris-serotonin (RisS) and CTcS complexes had a stable conformation; however, the CTcS complex was more stable.
Collapse
|