1
|
Wei G, Deng S, Shao D, Xu D, Lei R, Li X. Gemini cationic surfactant of 1, 3-bis (dodecyl dimethyl ammonium chloride) propane as a novel excellent inhibitor for the corrosion of cold rolled steel in HCl solution. J Colloid Interface Sci 2025; 677:324-345. [PMID: 39096702 DOI: 10.1016/j.jcis.2024.07.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Gemini surfactants have become the research focus of novel excellent inhibitors because of their special structure (two amphiphilic moieties covalently connected at head group by a spacer) and excellent surface properties. It is proved by theoretical calculations that 1, 3-bis (dodecyl dimethyl ammonium chloride) propane (BDDACP) molecules can perform electron transfer with Fe (110). And it has a small fraction free volume, thus greatly reducing the diffusion and migration degree of corrosive particles. The potentiodynamic polarization curve showed that coefficients of cathodic and anodic reaction less than 1 and polarization resistance increased to 1602.9 Ω cm-2 after added BDDACP, confirming that BDDACP significantly inhibited the corrosion reaction by occupying the active site. The electrochemical impedance spectrum of imperfect semi-circle shows that the system resistance increases and double layer capacitance after added BDDACP. Weight loss tests also confirmed that BDDACP forms protective film by occupying the active sites on steel surface, and the maximum inhibition efficiency is 92 %. Comparison of the microscopic morphology showed that steel surface roughness was significantly reduced after added BDDACP. The results of time-of-flight secondary ion mass spectrometry show that steel surface contains some elements from BDDACP, which confirms the adsorption of BDDACP on steel surface.
Collapse
Affiliation(s)
- Gaofei Wei
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Shuduan Deng
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Dandan Shao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, PR China
| | - Ran Lei
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Xianghong Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
2
|
El-Khlifi A, Zouhair FZ, Al-Hadeethi MR, Lgaz H, Lee HS, Salghi R, Hammouti B, Erramli H. Assessment of Hydrazone Derivatives for Enhanced Steel Corrosion Resistance in 15 wt.% HCl Environments: A Dual Experimental and Theoretical Perspective. Molecules 2024; 29:985. [PMID: 38474497 DOI: 10.3390/molecules29050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
This study evaluates the corrosion inhibition capabilities of two novel hydrazone derivatives, (E)-2-(5-methoxy-2-methyl-1H-indol-3-yl)-N'-(4-methylbenzylidene)acetohydrazide (MeHDZ) and (E)-N'-benzylidene-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (HHDZ), on carbon steel in a 15 wt.% HCl solution. A comprehensive suite of analytical techniques, including gravimetric analysis, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM), demonstrates their significant inhibition efficiency. At an optimal concentration of 5 × 10-3 mol/L, MeHDZ and HHDZ achieve remarkable inhibition efficiencies of 98% and 94%, respectively. EIS measurements reveal a dramatic reduction in effective double-layer capacitance (from 236.2 to 52.8 and 75.3 µF/cm2), strongly suggesting inhibitor adsorption on the steel surface. This effect is further corroborated by an increase in polarization resistance and a significant decrease in corrosion current density at optimal concentrations. Moreover, these inhibitors demonstrate sustained corrosion mitigation over extended exposure durations and maintain effectiveness even under elevated temperatures, highlighting their potential for diverse operational conditions. The adsorption process of these inhibitors aligns well with the Langmuir adsorption isotherm, implying physicochemical interactions at the carbon steel surface. Density functional tight-binding (DFTB) calculations and molecular dynamics simulations provide insights into the inhibitor-surface interaction mechanism, further elucidating the potential of these hydrazone derivatives as highly effective corrosion inhibitors in acidic environments.
Collapse
Affiliation(s)
- Abdelilah El-Khlifi
- Team of Materials, Electrochemistry and Environment, Laboratory of Organic Chemistry, Catalysis, and Environment, Faculty of Sciences, Ibn Tofail University, BP 133, Kenitra 14000, Morocco
| | - Fatima Zahrae Zouhair
- Laboratory of Plant, Animal and Agro Industry Productions, Faculty of Sciences, Ibn Tofail University, B.P. 133, Kenitra 14000, Morocco
| | - Mustafa R Al-Hadeethi
- Department of Chemistry, College of Education, University of Kirkuk, Kirkuk 36001, Iraq
| | - Hassane Lgaz
- Innovative Durable Building and Infrastructure Research Center, Center for Creative Convergence Education, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si 15588, Gyeonggi-do, Republic of Korea
| | - Han-Seung Lee
- Department of Architectural Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, San-grok-gu, Ansan-si 15588, Gyeonggi-do, Republic of Korea
| | - Rachid Salghi
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, Fes 30030, Morocco
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco
| | - Belkheir Hammouti
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, Fes 30030, Morocco
| | - Hamid Erramli
- Team of Materials, Electrochemistry and Environment, Laboratory of Organic Chemistry, Catalysis, and Environment, Faculty of Sciences, Ibn Tofail University, BP 133, Kenitra 14000, Morocco
| |
Collapse
|
3
|
Wang J, An L, Wang J, Gu J, Sun J, Wang X. Frontiers and advances in N-heterocycle compounds as corrosion inhibitors in acid medium: Recent advances. Adv Colloid Interface Sci 2023; 321:103031. [PMID: 37907032 DOI: 10.1016/j.cis.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
The acid solution is widely used in chemical cleaning, oil well acidifying, and other fields, which also brings the problem of metal corrosion that cannot be underestimated. However, adding an inhibitor is one of the most convenient and effective ways to slow down metal corrosion. N-heterocyclic compounds with high stability and durability, in line with the strategy of sustainable development, have been widely studied in an acidic environment. Imidazole, pyridine, and quinoline compounds, as the most commonly used corrosion inhibitors, can form a compact protective film via π electron cloud shifting towards the N atoms to generate coordination function. In particular, flexible modifiability makes N-heterocyclic compounds adapt to different corrosion environments readily, conducive to the formation of chemical bonds between compounds with metal surfaces to be better adsorption, so as to avoid the blemish of traditional inhibitors (such as inorganic salt and organic amines inhibitors) due to excessive usage, surface roughness of metal or environmental factor (for instance, temperature, pH and metallic) causing loose bonding between film and metal surface. More importantly, the efficient corrosion inhibition and toxicity of N-heterocyclic compounds have close to do with their own functional groups. Combined with the latest research achievement, the effects of different substituents on the corrosion inhibition and corrosion inhibition mechanisms were systematically reviewed in the acid-corrosive solution of imidazole, pyridine, and quinoline and their derivatives in this review article, respectively. In addition, the application and function of density functional theory in predicting the corrosion inhibition effect of corrosion inhibitors are also discussed. The future development trend was prospected according to the summarized research results.
Collapse
Affiliation(s)
- Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Benzbiria N, Thoume A, Echihi S, Belghiti M, Elmakssoudi A, Zarrouk A, Azzi M, Zertoubi M. Coupling of experimental and theoretical studies to apprehend the action of benzodiazepine derivative as a corrosion inhibitor of carbon steel in 1M HCl. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Asymmetric Gemini Surfactants as Corrosion Inhibitors for Carbon Steel in Acidic Medium: Experimental and theoretical studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Zhang H, Yang Z, Zhang L, Yue W, Zhu Y, Zhang X. Inhibition performance of halogen-substituted benzaldehyde thiosemicarbazones as corrosion inhibitors for mild steel in hydrochloric acid solution. RSC Adv 2022; 12:30611-30625. [PMID: 36337938 PMCID: PMC9597289 DOI: 10.1039/d2ra05690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
Halogen-substituted benzaldehyde thiosemicarbazone derivatives were synthesized and their inhibition performance for mild steel in hydrochloric acid solution were investigated systematically using weight loss measurements, electrochemical techniques, scanning electron microscopy and quantum chemical calculations. Results of weight loss measurements indicated that all these compounds exhibited excellent inhibition performance and the inhibition efficiency increased with increasing inhibitor concentrations. Polarization results revealed that the synthesized benzaldehyde thiosemicarbazone derivatives were mixed-type inhibitors. Adsorption of these compounds onto a mild steel surface was mainly chemisorption and complied with the Langmuir adsorption isotherms. Both theoretical calculations and experimental measurements suggested that the inhibition efficiency of these compounds followed the order of Br-BT > Cl-BT > F-BT > H-BT.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Chemical Engineering and Safety, Binzhou UniversityBinzhouShandong 256600PR China+86-18766499800,Binzhou Key Laboratory of Aviation General MaterialsBinzhouShandong 256600PR China
| | - Zhongnian Yang
- Department of Chemical Engineering and Safety, Binzhou UniversityBinzhouShandong 256600PR China+86-18766499800,Binzhou Key Laboratory of Aviation General MaterialsBinzhouShandong 256600PR China,Binzhou Key Laboratory of Applied ElectrochemistryBinzhouShandong 256600PR China
| | - Li Zhang
- Department of Chemical Engineering and Safety, Binzhou UniversityBinzhouShandong 256600PR China+86-18766499800
| | - Wu Yue
- Department of Chemical Engineering and Safety, Binzhou UniversityBinzhouShandong 256600PR China+86-18766499800
| | - Yanfeng Zhu
- Department of Chemical Engineering and Safety, Binzhou UniversityBinzhouShandong 256600PR China+86-18766499800,Binzhou Key Laboratory of Aviation General MaterialsBinzhouShandong 256600PR China,Binzhou Key Laboratory of Applied ElectrochemistryBinzhouShandong 256600PR China
| | - Xian Zhang
- Department of Chemical Engineering and Safety, Binzhou UniversityBinzhouShandong 256600PR China+86-18766499800,Binzhou Key Laboratory of Applied ElectrochemistryBinzhouShandong 256600PR China
| |
Collapse
|
7
|
Ghaderi M, Ramazani S A A, Kordzadeh A, Mahdavian M, Alibakhshi E, Ghaderi A. Corrosion inhibition of a novel antihistamine-based compound for mild steel in hydrochloric acid solution: experimental and computational studies. Sci Rep 2022; 12:13450. [PMID: 35927311 PMCID: PMC9352695 DOI: 10.1038/s41598-022-17589-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Focused on the assessment of the diphenhydramine hydrochloride (DPH) capabilities as an alternative to conventional and harmful industrial corrosion inhibitors, electrochemical techniques were employed. The optimum concentration of 1000 ppm was determined by molecular simulation and validated through electrochemical experiments. The results acquired from the electrochemical impedance spectroscopy (EIS) study showed that DPH at a concentration of 1000 ppm has a corrosion efficiency of 91.43% after 6 h immersion. The DPH molecules' orientation on the surface was assessed based on EIS predicting horizontal adsorption on the surface. Molecular simulations were done to explore the adsorption mechanism of DPH. The DPH molecules' orientation on the surface was also assessed based on computational studies confirming the horizontal adsorption predicted by EIS.
Collapse
Affiliation(s)
- Mohammad Ghaderi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahmad Ramazani S A
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Azadeh Kordzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Mahdavian
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran, Iran.
| | - Eiman Alibakhshi
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran, Iran.,Atlas Protecting Coating Company, Tehran, Iran
| | - Arash Ghaderi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas, 7916193145, Iran
| |
Collapse
|