1
|
Choi Y, Lee M, Nam C. Catechol-Fe(III) complexes modified PVDF membrane for hazardous pollutants separation and antifouling properties. CHEMOSPHERE 2024; 364:143094. [PMID: 39151589 DOI: 10.1016/j.chemosphere.2024.143094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Organic pollutants, such as toluene and xylene, in industrial wastewater negatively impact the environment. Membrane treatment is one of the best methods to reduce impurities in wastewater. Existing membranes that coat the water surface with hydrophilic material only effectively resist the initial fouling, resulting in poor oil and water selectivity. Here we report a simple and efficient method to enhance the water flux and antifouling properties of polyvinylidene fluoride (PVDF) membranes. This method involves developing and applying Catechol-Fe(III) complexes with a rough surface to the PVDF surface. Forming Catechol-Fe(III) complexes on the surface better anchors them to the membrane than the dip-coating method. The PVDF membranes with rough Catechol-Fe(III) complexes are superoleophobic, with an oil contact angle of 152 ° and high permeability, with pure water flux of 10487 Lm-2h-1bar-1 and 1 wt% toluene in water emulsion flux of 4697 Lm-2h-1bar-1. Overall, the straightforward manufacturing process, increased permeability, and outstanding antifouling capabilities of the PVDF membrane incorporating rough nanoparticles offer promising prospects for designing and implementing suitable membranes for oil in water emulsion separation applications.
Collapse
Affiliation(s)
- Youngmin Choi
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Moonjin Lee
- Maritime Safety Research Division, Korea Research Institute of Ships and Ocean Engineering, KIOST, Daejeon, 305-343, Republic of Korea
| | - Changwoo Nam
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
2
|
Gao M, Li B, Liu J, Hu Y, Cheng H. Adsorption behavior and mechanism of modified Fe-based metal-organic framework for different kinds of arsenic pollutants. J Colloid Interface Sci 2024; 654:426-436. [PMID: 37857095 DOI: 10.1016/j.jcis.2023.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Arsenic in water environment can present significant threats to human health, and eliminating arsenic pollutants from wastewater is crucial. Based on our previously reported work, this study delved into the adsorption behavior and mechanism of different arsenic contaminants (p-ASA, ROX, As(V), and DMA) on the activated Fe-based metal-organic framework (activated MIL-88A). The results show that activated MIL-88A exhibits exceptional adsorption capabilities toward diverse arsenic pollutants. The adsorption process is endothermic, spontaneous, and viable, and chemical adsorption plays a leading role. The remarkable adsorption capacity of activated MIL-88A to various arsenic pollutants is primarily attributed to coordination, while hydrogen bonding also assumes a significant role in the elimination of p-ASA and ROX. Additionally, we investigated the impact of arsenic molecule shape and size, solution pH, and the existence of specific anions and dissolved organic matter (DOM) on the adsorption of different arsenic pollutants. This study can provide valuable insights for further exploring the selective adsorption of different kinds of arsenic species by Fe-based MOF materials and improving the adsorption efficiency of MOFs.
Collapse
Affiliation(s)
- Mengwei Gao
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bing Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jue Liu
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, Hebei, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Li X, Li X, Wang C, Wang B. A novel design of Cu(I) active site on the metal-organic framework for exploring the structural transformation of Fenton-like catalysts through in situ "capturing" OH . J Colloid Interface Sci 2023; 648:778-786. [PMID: 37321097 DOI: 10.1016/j.jcis.2023.05.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
The mutual transformation of reactive oxygen species may affect the structural transformation of catalysts during the Fenton-like processes. Its in-depth understanding is essential to achieve high catalytic activity and stability. In this study, a novel design of Cu(I) active sites based on the metal-organic framework (MOF) is proposed to "capture" OH- produced via Fenton-like processes and re-coordinate the oxidized Cu sites. The Cu(I)-MOF presents an excellent removal efficiency for sulfamethoxazole (SMX), with a high removal kinetic constant of 7.146 min-1. Combing DFT calculations with experimental observations, we have revealed that the Cu of Cu(I)-MOF exhibits a lower d-band center, enabling efficient activation of H2O2 and spontaneous "capturing" of OH- to form Cu-MOF, which can be reorganized into the Cu(I)-MOF through molecular regulation for recycle. This research demonstrates a promising Fenton-like approach for solving the trade-off between catalytic activity and stability and provides new insights into the design and synthesis of efficient MOF-based catalysts for water treatment.
Collapse
Affiliation(s)
- Xuheng Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Xiang Li
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Chunli Wang
- Research Center for Environmental Materials and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Han M, Wang H, Jin W, Chu W, Xu Z. The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation. J Environ Sci (China) 2023; 128:181-202. [PMID: 36801034 DOI: 10.1016/j.jes.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/18/2023]
Abstract
Many studies have successfully built iron-mediated materials to activate or catalyze Fenton-like reactions, with applications in water and wastewater treatment being investigated. However, the developed materials are rarely compared with each other regarding their performance of organic contaminant removal. In this review, the recent advances of Fenton-like processes in homogeneous and heterogeneous ways are summarized, especially the performance and mechanism of activators including ferrous iron, zero valent iron, iron oxides, iron-loaded carbon, zeolite, and metal organic framework materials. Also, this work mainly compares three O-O bond containing oxidants including hydrogen dioxide, persulfate, and percarbonate, which are environmental-friendly oxidants and feasible for in-situ chemical oxidation. The influence of reaction conditions, catalyst properties and benefits are analyzed and compared. In addition, the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed. This work can help understand the mechanistic insights of variable Fenton-like reactions, the role of emerging iron-based materials, and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications.
Collapse
Affiliation(s)
- Mengqi Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Abstract
Two-dimensional compounds with nanostructural features are attracting attention from researchers worldwide. Their multitude of applications in various fields and vast potential for future technology advancements are successively increasing the research progress. Wastewater treatment and preventing dangerous substances from entering the environment have become important aspects due to the increasing environmental awareness, and increasing consumer demands have resulted in the appearance of new, often nonbiodegradable compounds. In this review, we focus on using the most promising 2D materials, such as MXenes, Bi2WO6, and MOFs, as catalysts in the modification of the Fenton process to degrade nonbiodegradable compounds. We analyze the efficiency of the process, its toxicity, previous environmental applications, and the stability and reusability of the catalyst. We also discuss the catalyst’s mechanisms of action. Collectively, this work provides insight into the possibility of implementing 2D material-based catalysts for industrial and urban wastewater treatment.
Collapse
|