1
|
McLean B, Yarovsky I. Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405299. [PMID: 39380429 DOI: 10.1002/smll.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Silica nanoparticles (SNPs), one of the most widely researched materials in modern science, are now commonly exploited in surface coatings, biomedicine, catalysis, and engineering of novel self-assembling materials. Theoretical approaches are invaluable to enhancing fundamental understanding of SNP properties and behavior. Tremendous research attention is dedicated to modeling silica structure, the silica-water interface, and functionalization of silica surfaces for tailored applications. In this review, the range of theoretical methodologies are discussed that have been employed to model bare silica and functionalized silica. The evolution of silica modeling approaches is detailed, including classical, quantum mechanical, and hybrid methods and highlight in particular the last decade of theoretical simulation advances. It is started with discussing investigations of bare silica systems, focusing on the fundamental interactions at the silica-water interface, following with a comprehensively review of the modeling studies that examine the interaction of silica with functional ligands, peptides, ions, surfactants, polymers, and carbonaceous species. The review is concluded with the perspective on existing challenges in the field and promising future directions that will further enhance the utility and importance of the theoretical approaches in guiding the rational design of SNPs for applications in engineering and biomedicine.
Collapse
Affiliation(s)
- Ben McLean
- School of Engineering, RMIT University, Melbourne, 3001, Australia
- ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, 3001, Australia
- ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia
| |
Collapse
|
2
|
Yang Y, Narayanan Nair AK, Lau D, Sun S. Interfacial properties of the brine + carbon dioxide + oil + silica system. J Chem Phys 2024; 160:114702. [PMID: 38497476 DOI: 10.1063/5.0197087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Molecular dynamics simulations of the H2O + CO2 + aromatic hydrocarbon and H2O + CO2 + benzene + silica (hydrophilic) systems are performed to gain insights into CO2-enhanced oil recovery (EOR) processes. For comparison purposes, an overview of the previous simulation studies of the interfacial properties of the brine + CO2 + alkane + silica system is also presented. In general, the water contact angle (CA) of the H2O + CO2 + silica (hydrophilic) system increased with pressure and decreased with temperature. The CAs of the H2O + hydrocarbon + silica (hydrophilic) system are not significantly affected by temperature and pressure. The simulated CAs were in the ranges of about 58°-77° and 81°-93° for the H2O + hexane + silica (hydrophilic) and the H2O + aromatic hydrocarbon + silica (hydrophilic) systems, respectively. In general, these CAs were not significantly influenced by the addition of CO2. The simulated CAs were in the ranges of about 51.4°-95.0°, 69.1°-86.0°, and 72.0°-87.9° for the brine + CO2 + silica (hydrophilic), brine + hexane + silica (hydrophilic), and brine + CO2 + hexane + silica (hydrophilic) systems, respectively. All these CAs increased with increasing NaCl concentration. The adhesion tension of the brine + silica (hydrophilic) system in the presence of CO2 and/or hexane decreased with increasing salt concentration. The simulated CAs were in the range of about 117°-139° for the H2O + alkane + silica (hydrophobic) system. These CAs are increased by the addition of CO2. At high pressures, the distributions of H2O normal to the silica (hydrophobic) surface in the droplet region of the H2O + silica system were found to be strongly affected by the presence of CO2. These insights might be key for optimizing the performance of the miscible CO2 water-alternating-gas injection schemes widely used for EOR.
Collapse
Affiliation(s)
- Yafan Yang
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Yang Y, Wan J, Li J, Zhao G, Shang X. Molecular modeling of interfacial properties of the hydrogen + water + decane mixture in three-phase equilibrium. Phys Chem Chem Phys 2023; 25:29641-29655. [PMID: 37881893 DOI: 10.1039/d3cp04406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The understanding of interfacial phenomena between H2 and geofluids is of great importance for underground H2 storage, but requires further study. We report the first investigation on the three-phase fluid mixture containing H2, H2O, and n-C10H22. Molecular dynamics simulation and PC-SAFT density gradient theory are employed to estimate the interfacial properties under various conditions (temperature ranges from 298 to 373 K and pressure is up to around 100 MPa). Our results demonstrate that interfacial tensions (IFTs) of the H2-H2O interface in the H2 + H2O + C10H22 three-phase mixture are smaller than IFTs in the H2 + H2O two-phase mixture. This decrement of IFT can be attributed to C10H22 adsorption in the interface. Importantly, H2 accumulates in the H2O-C10H22 interface in the three-phase systems, which leads to weaker increments of IFT with increasing pressure compared to IFTs in the water + C10H22 two-phase mixture. In addition, the IFTs of the H2-C10H22 interface are hardly influenced by H2O due to the limited amount of H2O dissolved in nonaqueous phases. Nevertheless, positive surface excesses of H2O are seen in the H2-C10H22 interfacial region. Furthermore, the values of the spreading coefficient are mostly negative revealing the presence of the three-phase contact for the H2 + H2O + C10H22 mixture under studied conditions.
Collapse
Affiliation(s)
- Yafan Yang
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China.
| | - Jingyu Wan
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China.
| | - Jingfa Li
- School of Mechanical Engineering and Hydrogen Energy Research Center, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Guangsi Zhao
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China.
| | - Xiangyu Shang
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China.
| |
Collapse
|
4
|
Yang Y, Wan J, Shang X, Sun S. Molecular insights into fluid-solid interfacial tensions in water + gas + solid systems at various temperatures and pressures. J Chem Phys 2023; 159:094701. [PMID: 37655769 DOI: 10.1063/5.0157957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
The fluid-solid interfacial tension is of great importance to many applications including the geological storage of greenhouse gases and enhancing the recovery of geo-resources, but it is rarely studied. Extensive molecular dynamics simulations are conducted to calculate fluid-solid interfacial properties in H2O + gas (H2, N2, CH4, and CO2) + rigid solid three-phase systems at various temperatures (298-403 K), pressures (0-100 MPa), and wettabilities (hydrophilic, neutral, and hydrophobic). Our results on the H2O + solid system show that vapor-solid interfacial tension should not be ignored in cases where the fluid-solid interaction energy is strong or the contact angle is close to 90°. As the temperature rises, the magnitude of H2O's liquid-solid interfacial tension declines because the oscillation of the interfacial density/pressure profile weakens at high temperatures. However, the magnitude of H2O vapor-solid interfacial tension is enhanced with temperature due to the stronger adsorption of H2O. Moreover, the H2O-solid interfacial tension in H2O + gas (H2 or N2) + solid systems is weakly dependent on pressure, while the pressure effects on H2O-solid interfacial tensions in systems with CH4 or CO2 are significant. We show that the assumption of pressure independent H2O-solid interfacial tensions should be cautiously applied to Neumann's method for systems containing non-hydrophilic surfaces with strong gas-solid interaction. Meanwhile, the magnitude of gas-solid interfacial tension increases with pressure and gas-solid interaction. High temperatures generally decrease the magnitude of gas-solid interfacial tensions. Further, we found that the increment of contact angle due to the presence of gases follows this order: H2 < N2 < CH4 < CO2.
Collapse
Affiliation(s)
- Yafan Yang
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- Computational Transport Phenomena Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jingyu Wan
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Xiangyu Shang
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Shuyu Sun
- Computational Transport Phenomena Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Yang Y, Che Ruslan MFA, Narayanan Nair AK, Qiao R, Sun S. Interfacial properties of the hexane + carbon dioxide + water system in the presence of hydrophilic silica. J Chem Phys 2022; 157:234704. [PMID: 36550045 DOI: 10.1063/5.0130986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Molecular dynamics simulations were conducted to study the interfacial behavior of the CO2 + H2O and hexane + CO2 + H2O systems in the presence of hydrophilic silica at geological conditions. Simulation results for the CO2 + H2O and hexane + CO2 + H2O systems are in reasonable agreement with the theoretical predictions based on the density functional theory. In general, the interfacial tension (IFT) of the CO2 + H2O system exponentially (linearly) decreased with increasing pressure (temperature). The IFTs of the hexane + CO2 + H2O (two-phase) system decreased with the increasing mole fraction of CO2 in the hexane/CO2-rich phase xCO2 . Here, the negative surface excesses of hexane lead to a general increase in the IFTs with increasing pressure. The effect of pressure on these IFTs decreased with increasing xCO2 due to the positive surface excesses of carbon dioxide. The simulated water contact angles of the CO2 + H2O + silica system fall in the range from 43.8° to 76.0°, which is in reasonable agreement with the experimental results. These contact angles increased with pressure and decreased with temperature. Here, the adhesion tensions are influenced by the variations in fluid-fluid IFT and contact angle. The simulated water contact angles of the hexane + H2O + silica system fall in the range from 58.0° to 77.0° and are not much affected by the addition of CO2. These contact angles increased with pressure, and the pressure effect was less pronounced at lower temperatures. Here, the adhesion tensions are mostly influenced by variations in the fluid-fluid IFTs. In all studied cases, CO2 molecules could penetrate into the interfacial region between the water droplet and the silica surface.
Collapse
Affiliation(s)
- Yafan Yang
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Mohd Fuad Anwari Che Ruslan
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Yang Y, Anwari Che Ruslan MF, Zhu W, Zhao G, Sun S. Interfacial Behaviors of the H2O+CO2+CH4+C10H22 System in Three Phase Equilibrium: A Combined Molecular Dynamics Simulation and Density Gradient Theory Investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Narayanan Nair AK, Che Ruslan MFA, Cui R, Sun S. An Overview of the Oil+Brine Two-Phase System in the Presence of Carbon Dioxide, Methane, and Their Mixture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohd Fuad Anwari Che Ruslan
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ronghao Cui
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Interfacial Properties of H2O+CO2+Oil Three-Phase Systems: A Density Gradient Theory Study. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interfacial property of H2O+CO2+oil three-phase systems is crucial for CO2 flooding and sequestration processes but was not well understood. Density gradient theory coupled with PC-SAFT equation of state was applied to investigate the interfacial tension (IFT) of H2O+CO2+oil (hexane, cyclohexane, and benzene) systems under three-phase conditions (temperature in the range of 323–423 K and pressure in the range of 1–10 MPa). The IFTs of the aqueous phase+vapor phase in H2O+CO2+oil three-phase systems were smaller than the IFTs in H2O+CO2 two-phase systems, which could be explained by enrichment of oil in the interfacial region. The difference between IFTs of aqueous phase+vapor phase in the three-phase system and IFTs in H2O+CO2 two-phase system was largest in the benzene case and smallest in the cyclohexane case due to different degrees of oil enrichment in the interface. Meanwhile, CO2 enrichment was observed in the interfacial region of the aqueous phase+oil-rich phase, which led to the reduction of IFT with increasing pressure while different pressure effects were observed in the H2O+oil two-phase systems. The effect of CO2 on the IFTs of aqueous phase+benzene-rich phase interface was small in contrast to that on the IFTs of aqueous phase+alkane (hexane or cyclohexane)-rich phase interface. H2O had little effect on the interfacial properties of the oil-rich phase+vapor phase due to the low H2O solubilities in the oil and vapor phase. Further, the spreading coefficients of H2O+CO2 in the presence of different oil followed this sequence: benzene > hexane > cyclohexane.
Collapse
|