1
|
Cui Y, Sun Y, Yu H, Guo Y, Yao W, Xie Y, Yang F. Exploring the binding mechanism and adverse toxic effects of degradation metabolites of pyrethroid insecticides to human serum albumin: Multi-spectroscopy, calorimetric and molecular docking approaches. Food Chem Toxicol 2023; 179:113951. [PMID: 37479174 DOI: 10.1016/j.fct.2023.113951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Pyrethroid insecticides (PIs), a class of structurally similar non-persistent organic pollutants, can be degraded and metabolized to more toxic, and longer half-life products. In this study, the binding interaction mechanisms between human serum albumin (HSA) and the main degradation metabolites of PIs, 3-phenoxybenzoic acid (3-PBA) and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), were studied by theoretical simulation and experimental verification. Steady state fluorescence spectra showed that the fluorescence quenching mechanism was static. According to the binding constant, 4-F-3-PBA (1.53 × 105 L mol-1) was bound more strongly to HSA than 3-PBA (1.42 × 105 L mol-1) in subdomain ⅡA (site I). It was found by isothermal titration calorimetry that the metabolites and HSA spontaneously combined mainly through hydrogen bond and van der Waals interaction. Ultraviolet absorption spectra and circular dichroism spectra showed that the metabolites caused slight changes in the microenvironment and conformation of HSA. The above results were proved by molecular docking. The toxicity properties of the metabolites were further analyzed by software, and 4-F-3-PBA was found to be more toxic than 3-PBA. Considering the high exposure level of these metabolites in food, the environment and human body, it is necessary to further explore the toxicity of PIs metabolites.
Collapse
Affiliation(s)
- Yiwen Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| | - Fangwei Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food and Health, Beijing Technology & Business University (BTBU), 33 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
4
|
Naziris N, Sekowski S, Olchowik-Grabarek E, Buczkowski A, Balcerzak Ł, Chrysostomou V, Pispas S, Małecka M, Bryszewska M, Ionov M. Biophysical interactions of mixed lipid-polymer nanoparticles incorporating curcumin: Potential as antibacterial agent. BIOMATERIALS ADVANCES 2022; 144:213200. [PMID: 36442451 DOI: 10.1016/j.bioadv.2022.213200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The technology of lipid nanoparticles has a long history in drug delivery, which begins with the discovery of liposomes by Alec D Bangham in the 1960s. Since then, numerous studies have been conducted on these systems, and several nanomedicinal products that utilize them have entered the market, with the latest being the COVID-19 vaccines. Despite their success, many aspects of their biophysical behavior are still under investigation. At the same time, their combination with other classes of biomaterials to create more advanced platforms is a promising endeavor. Herein, we developed mixed lipid-polymer nanoparticles with incorporated curcumin as a drug delivery system for therapy, and we studied its interactions with various biosystems. Initially, the nanoparticle physicochemical properties were investigated, where their size, size distribution, surface charge, morphology, drug incorporation and stability were assessed. The incorporation of the drug molecule was approximately 99.8 % for a formulated amount of 10 % by weight of the total membrane components and stable in due time. The association of the nanoparticles with human serum albumin and the effect that this brings upon their properties was studied by several biophysical techniques, including light scattering, thermal analysis and circular dichroism. As a biocompatibility assessment, interactions with erythrocyte membranes and hemolysis induced by the nanoparticles were also studied, with empty nanoparticles being more toxic than drug-loaded ones at high concentrations. Finally, interactions with bacterial membrane proteins of Staphylococcus aureus and the antibacterial effect of the nanoparticles were evaluated, where the effect of curcumin was improved when incorporated inside the nanoparticles. Overall, the developed mixed nanoparticles are promising candidates for the delivery of curcumin to infectious and other types of diseases.
Collapse
Affiliation(s)
- Nikolaos Naziris
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Szymon Sekowski
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski Street 1J, 15-245 Białystok, Poland
| | - Ewa Olchowik-Grabarek
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski Street 1J, 15-245 Białystok, Poland
| | - Adam Buczkowski
- Division of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland
| | - Łucja Balcerzak
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Magdalena Małecka
- Division of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
5
|
Shaikh SAM, Gawali SL, Jain VK, Priyadarsini KI. Unravelling the molecular interaction of diselenodipropionic acid (DSePA) with human serum albumin (HSA). NEW J CHEM 2022. [DOI: 10.1039/d2nj01443b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DSePA, a pharmacologically efficient selenium compound shows strong binding with extracellular carrier protein, Human Serum Albumin.
Collapse
Affiliation(s)
- Shaukat Ali M. Shaikh
- School of Chemical Sciences, UM-DAE, Centre for Excellence in Basic Sciences, Mumbai University, (Kalina Campus), Santa Cruz (East), Mumbai 400098, India
| | - S. L. Gawali
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - V. K. Jain
- School of Chemical Sciences, UM-DAE, Centre for Excellence in Basic Sciences, Mumbai University, (Kalina Campus), Santa Cruz (East), Mumbai 400098, India
| | - K. I. Priyadarsini
- School of Chemical Sciences, UM-DAE, Centre for Excellence in Basic Sciences, Mumbai University, (Kalina Campus), Santa Cruz (East), Mumbai 400098, India
| |
Collapse
|
6
|
Tinku, Gautam P, Choudhary S. Physicochemical insights into the micelle-based drug-delivery of bioactive compounds to the carrier protein. NEW J CHEM 2022. [DOI: 10.1039/d2nj04244d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micelles have ability to encapsulate a wide range of drugs and modulate their delivery to the carrier/target proteins.
Collapse
Affiliation(s)
- Tinku
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India
| | - Pankaj Gautam
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India
| | - Sinjan Choudhary
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India
| |
Collapse
|