1
|
Şener S, Acar-Selçuki N. Electronic, structural and nonlinear optical investigation of manganese carbonyl complexes of isatin derivatives by DFT. J Mol Model 2024; 31:22. [PMID: 39680230 DOI: 10.1007/s00894-024-06251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
CONTEXT Isatin-Schiff bases have wide applications in chemistry. The π conjugated electronic system and heterocylic structure of these materials make them valuable for use as photosensitized materials. The delocalization of π-electrons throughout the structure causes the UV-vis absorption spectra to shift to longer wavelengths. In this study, the isatin manganese carbonyl complex shifted the UV-vis absorption wavelength to a longer wavelength (vis. 400-700 nm) compared with our previous studies. The isatin derivatives (ISE (3[4-ethyl(phenyl)imino][indoline-2-one]), ISB (3[4-butly(phenyl)imino][indoline-2-one])) and their Mn carbonyl complexes MnISE ((ISE)Mn(CO)3), and, MnISB ((ISB)Mn(CO)3) were investigated via density functional theory (DFT) in different solvent media. The most stable complexes were found in medium polarity THF. The calculated HOMO-LUMO energy gap shows that the charge transfer occurs within the molecule. The HOMO-LUMO energy gap was increased with increasing solvent polarity for all investigated compounds. The smaller energy gap indicates that charge transfer occurs within the Mn(II) complex, in contrast to ISE and ISB, which exhibit larger energy gaps. As a result, the maximum absorption of Mn complexes shifts to the visible region. MnISB has the smallest HOMO-LUMO energy gap in THF. Additionally, the global reactivity parameters indicated that the MnISE complex has the highest electrophilicity index. DFT calculations have also been performed to investigate polarizability and first-order hyperpolarizability of these compounds. In water, the ISE had higher NLO values than the other structures did. These results indicate that all the studied molecules in different solvents could be good candidates for use in photosensitized and nonlinear optical materials. METHODS Geometries were determined at the DFT level via the LANL2DZ basis set for Mn and cc-PVTZ for other atoms in the molecules with the B3LYP functional. The UV-vis absorption spectra and HOMO-LUMO energies of ISE, ISB, and their Mn complexes were calculated by Time-dependent DFT (TDDFT) with CAM-B3LYP using the same basis sets. The UV-vis absorption spectra of ISE were also measured in acetonitrile and compared with the calculated spectra, which were consistent with the experimental results. All calculations were repeated in different solvents with the polarizable continuum model (PCM).
Collapse
Affiliation(s)
- Sevil Şener
- Department of Chemical Technology Program, Aliaga Vocational School, Ege University, Izmir, Türkiye
| | - Nursel Acar-Selçuki
- Department of Chemistry, Faculty of Science, Ege University, TR-35100, Bornova, Izmir, Türkiye.
| |
Collapse
|
2
|
Leitão MIPS, Morais TS. Tailored Metal-Based Catalysts: A New Platform for Targeted Anticancer Therapies. J Med Chem 2024; 67:16967-16990. [PMID: 39348603 DOI: 10.1021/acs.jmedchem.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Innovative strategies for targeted anticancer therapies have gained significant momentum, with metal complexes emerging as tunable catalysts for more effective and safer treatments. Rational design and engineering of metal complexes enable the development of tailored molecular structures optimized for precision oncology. The strategic incorporation of metal complex catalysts within combinatorial therapies amplifies their anticancer properties. This perspective highlights the advancements in synthetic strategies and rational design since 2019, showing how tailored metal catalysts are optimized by designing structures to release or in situ synthesize active drugs, leveraging the target-specific characteristics to develop more precise cancer therapies. This review explores metal-based catalysts, including those conjugated with biomolecules, nanostructures, and metal-organic frameworks (MOFs), highlighting their catalytic activity in biological environments and their in vitro/in vivo performance. To sum up, the potential of metal complexes as catalysts to reshape the landscape of anticancer therapies and foster novel avenues for therapeutic advancement is emphasized.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Czyżewska I, Mazur L, Popiołek Ł. Transition metal complexes of hydrazones as potential antimicrobial and anticancer agents: A short review. Chem Biol Drug Des 2024; 104:e14590. [PMID: 39039615 DOI: 10.1111/cbdd.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Hydrazones display an interesting profile of biological activities, which includes mainly antimicrobial and antiproliferative properties. Hydrazones also play an important role in the synthesis of heterocyclic rings and in coordination chemistry. Currently, the synthesis of complexes of hydrazones with transition metals is quite frequently reported in the scientific literature. The interest in this topic is largely due to diverse biological activities of the metal complexes of hydrazones that in some cases are much more effective than hydrazones themselves. This review focuses on the complexes of hydrazones with transition metals which display antibacterial, antitubercular, antifungal and anticancer activities. In the following subchapters devoted to a given activity, an attempt has been made to present the most active complexes of hydrazones, their trends in their activity and application in medicinal chemistry. The paper presents the literature data from 2009 to 2023. This review constitutes a useful guide for the researchers who intend to synthesize and investigate complexes of hydrazones in terms of their antimicrobial and anticancer activities.
Collapse
Affiliation(s)
- Izabela Czyżewska
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Liliana Mazur
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Adam MSS, Khalil A. Bioreactivity of divalent bimetallic vanadyl and zinc complexes bis-oxalyldihydrazone ligand against microbial and human cancer series. ctDNA interaction mode. Int J Biol Macromol 2023; 249:125917. [PMID: 37524289 DOI: 10.1016/j.ijbiomac.2023.125917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Two novel divalent bimetallic complexes were constructed from the complexation of O=V4+ and Zn2+ ions (VOL and ZnL), respectively, with diisatin oxalyldihydrazone ligand (H2L). Various spectroscopic tools were used to confirm their chemical structures (FT-IR, NMR, EI-Mass, and electronic spectra), besides, elemental analyses and conductivity features. To estimate the role of divalent metal ions in their coordination compound for developing their bio-reactivity, the free ligand H2Lox, and its complexes (VOL and ZnL) were employed spectroscopic investigations against the growth of some microbial series (fungi and bacteria) and also against three human cancer/normal cells. Furthermore, their interaction behavior against calf thymus DNA (ctDNA) was studied through viscometric and spectrophotometric studies to discover the role of O=V4+ and Zn2+ ions to determine the mode of binding with ctDNA. The inhibiting effect of H2L, VOL, and ZnL versus the titled microbial (bacterial and fungal) was built upon their inhibited zone areas in mm and the MIC concentrations in μM. Their action against the three human cancer cells' growth was evaluated by IC50 values in μM and the selectivity index in percentage. Both VOL and ZnL complexes exhibited an amazing series with three human cancer cell growth (according to the zone values in mm of inhibition, MIC in μM, and IC50 values in μM) compared to those of their uncoordinated H2L ligand. VOL demonstrated a distinguished interacting behavior with ctDNA more than that interaction of ZnL depending on the variation of the central metal ion chemical features. Within the covalent and non-covalent interaction modes, the interaction binding between H2L, VOL, and ZnL with ctDNA was discussed based on the electronic spectroscopic observation.
Collapse
Affiliation(s)
- Mohamed Shaker S Adam
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| | - Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Comprehensive catalytic and biological studies on new designed oxo- and dioxo-metal (IV/VI) organic arylhydrazone frameworks. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Adam MSS, Abdel-Rahman OS, Makhlouf MM. Metal ion induced changes in the structure of Schiff base hydrazone chelates and their reactivity effect on catalytic benzyl alcohol oxidation and biological assays. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Alhafez A, Aytar E, Kilic A. Enhancing catalytic strategy for cyclic carbonates synthesized from CO2 and epoxides by using cobaloxime-based double complex salts as catalysts. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Tailoring of some novel bis-hydrazone metal chelates, spectral based characterization and DFT calculations for pharmaceutical applications and in-silico treatments for verification. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Synthesis of new Cr(III) complexes derived from antipyrine-based ligands: Elucidation, conformation, cytotoxicity and genotoxicity via in-vitro and in-silico approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Comparable catalytic and biological behavior of alternative polar dioxo-molybdenum (VI) Schiff base hydrazone chelates. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Mohamed GG, Omar MM, Moustafa BS, AbdEl-Halim HF, Farag NA. Spectroscopic investigation, thermal, molecular structure, antimicrobial and anticancer activity with modelling studies of some metal complexes derived from isatin Schiff base ligand. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Adam MSS, Shaaban S, El‐Metwaly NM. Two ionic oxo‐vanadate and dioxo‐molybdate complexes of dinitro‐aroylhydazone derivative: effective catalysts towards epoxidation reactions, biological activity,
ct
DNA binding, DFT and
silico
investigations. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Saad Shaaban
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
- Department of Chemistry, Faculty of Applied Science Umm Al Qura University Makkah Saudi Arabia
| |
Collapse
|
13
|
Adam MSS, Makhlouf MM, Mohamed MA, Desoky M. Mohamad A. Promoted catalytic potential in sulfides oxidation and biological screening of green Pd (II) and Co (II) complexes of salicylidene isatin hydrazone ligand. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - M. M. Makhlouf
- Department of Sciences and Technology Ranyah University College, Taif University Taif Saudi Arabia
| | - Mamdouh A. Mohamed
- Chemistry Department High Institute of Engineering and Technology Luxor Egypt
| | | |
Collapse
|
14
|
El‐Sayed NMA, Elsawy H, Adam MSS. Polar and nonpolar iron (II) complexes of isatin hydrazone derivatives as effective catalysts in oxidation reactions and their antimicrobial and anticancer activities. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hany Elsawy
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|