1
|
Mustafa A, Faisal S, Ahmed IA, Munir M, Cipolatti EP, Manoel EA, Pastore C, di Bitonto L, Hanelt D, Nitbani FO, El-Bahy ZM, Inayat A, Abdellatief TMM, Tonova K, Bokhari A, Abomohra A. Has the time finally come for green oleochemicals and biodiesel production using large-scale enzyme technologies? Current status and new developments. Biotechnol Adv 2023; 69:108275. [PMID: 39492461 DOI: 10.1016/j.biotechadv.2023.108275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
With the growth of the chemical industry over the last decade, the need for cheaper (and more environmentally friendly) alternatives to petrochemicals of ever-increasing cost has grown steadily. Oleochemicals and biodiesel (OC/BD) are considered as green alternatives to petroleum derivatives, because they come from renewable oils and fats. OC/BD are currently produced by the traditional energy intensive chemical catalyzed methods, which have several economic and environmental drawbacks. For these reasons, the enzymatic production of OC/BD has attracted a growing attention for their greener pathway with respect to the chemically catalyzed processes. Lipase-catalyzed processes have a low energy requirement, since reactions are performed under atmospheric pressure and mild temperature and without the creation of side reactions. Furthermore, utilization of enzyme catalysts offers many advantages such as reducing the initial capital investment due to simplified downstream processing steps. Despite all the previous advantages, however, the high cost of lipases restricted their large-scale utilization. In the past decade, efforts have been made to reduce the cost of the enzymatic-catalyzed synthesis of OC/BD. However, most previous studies have studied only the technical feasibility of the lipase-catalyzed reactions and overlocked the economic viability. This review critically discusses the factors affecting the promotion of the economic feasibility of the enzymatic processes from the lab to large scale. These include reactor configuration, type of feedstock, conditions optimization, immobilization, lipase-producing microorganisms, and substrate diversification. In addition, this review reports the recent advances in lipase-catalyzed production of fatty acids, fatty esters, monoglycerides, and biodiesel in the lab as well as in the large-scales. To the best of authors' knowledge, this is the first review article reports the recent global progress achieved in both lab- and large-scale for the enzymatic production of OC/BD.
Collapse
Affiliation(s)
- Ahmad Mustafa
- Faculty of Engineering, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Inas A Ahmed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia
| | - Mamoona Munir
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Eliane Pereira Cipolatti
- Chemical Engineering Department, Institute of Technology, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Evelin Andrade Manoel
- Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro (UFRJ), Rio de Janeito, RJ, Brazil; Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlo Pastore
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5,70132 Bari, Italy
| | - Luigi di Bitonto
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5,70132 Bari, Italy
| | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Febri Odel Nitbani
- Department of Chemistry, Faculty of Science and Engineering, University of Nusa Cendana, Jl. Adisucipto, Penfui, Kupang 85001, Nusa Tenggara Timur, Indonesia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Tamer M M Abdellatief
- Sustainable Energy & Power Systems Research Center, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, EL-Minia 61519, Egypt
| | - Konstantza Tonova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 103, Sofia 1113, Bulgaria
| | - Awais Bokhari
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab 54000, Pakistan; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| |
Collapse
|