Lin H, Chen X, Luo Z, Xu J, Lu P, Xie T, Tang J, Wang H. Corrosion Inhibition Properties of Corrosion Inhibitors to under-Deposit Corrosion of X65 Steel in CO
2 Corrosion Conditions.
Molecules 2024;
29:2611. [PMID:
38893487 PMCID:
PMC11173720 DOI:
10.3390/molecules29112611]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under-deposit corrosion is widely present in the pipelines of oil and gas production, causing significant corrosion damage. In this paper, a novel electrochemical cathodic-polarization method was carried out to accelerate the formation of CaCO3 scale on a X65 steel surface in a simulated solution containing scaling ions. Subsequently, pre-scaled X65 steel was placed in a high temperature and pressure autoclave to conduct corrosion weight-loss experiments and in situ electrochemical measurements. The study mainly compared the corrosion inhibition behavior of four quaternary ammonium salt corrosion inhibitors, pyridinium quaternary salt (BPC), quinolinium quaternary salt (BQC), 8-hydroxyquinolinium quaternary salt (BHQ) and pyridinium (1-chloromethyl naphthalene) quaternary salt (1-CPN), in a simulated oilfield scale under corrosive conditions. The results of the weight-loss experiments demonstrated that the inhibition efficiencies of the corrosion inhibitors from high to low were as follows: 1-CPN < BHQ < BQC < BPC. The in situ electrochemical measurements showed that the immersion time and type of corrosion inhibitor had a pronounced influence on the corrosion and corrosion inhibition behavior of X65 steel with CaCO3 coating. It was also proved using both EIS and PC that 1-CPN shows the best inhibition performance in all. Lastly, the inhibition mechanism of corrosion inhibitors at under-deposit conditions was analyzed via a surface morphology observation of SEM.
Collapse