Rout A, Mishra S. Ligand Effect on Physicochemical Properties of Ionic Liquid.
Chemphyschem 2023;
24:e202200802. [PMID:
36631955 DOI:
10.1002/cphc.202200802]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
In the solvent extraction process, the importance of an extractant (or ligand) and a diluent is inferred from their respective physicochemical properties. We have brought together all the recent results reported on the mixture of different extractants dissolved in a well-known ionic liquid diluent: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4 mim][NTf2 ]) in the form of a review and aimed to emphasize the role of ligand polarity and structure on the physicochemical properties of an ionic liquid (IL) diluent. Some of the most important properties such as dynamic viscosity (η), absolute density ( ρ ${{\rm{{\rm \rho} }}}$ ), energy of activation (Ea ), coefficient of thermal expansion (α), phase separation time (PST), refractive index (n), etc., have been discussed meticulously in the paper. The effect of ligand structure on the aggregation behaviour of IL phase and the physicochemical properties of gamma irradiated solvent phases containing different ligands and their solution with IL phase also have been deliberated in detail.
Collapse