1
|
Yan Z, Meng L, Jiang S, Deng Y, Xi J, Zhang L, Li P, Xiao H, Wu W. Bifunctional Nanocellulose@MOF composite aerogel for selective fluorescent detection and efficient removal of tetracycline. Carbohydr Polym 2025; 347:122697. [PMID: 39486939 DOI: 10.1016/j.carbpol.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
The antibiotic tetracycline (TC) significantly pollutes water bodies, adversely impacting ecosystems and human health. In this work, a bifunctional platform for simultaneous detection and removal of TC was successfully constructed by in-situ growth of Zr-MOF in BC microspheres. The in-situ growth ensured the stability, while the design of the aerogel microspheres improved the processability, convenience, and recyclability. The macropores and mesopores in the aerogel microspheres significantly improved the molecular mass transfer efficiency, and the sensitivity and selectivity of TC detection and adsorption were improved due to the size-sieving effect of the abundant micropores of Zr-MOF and the supramolecular interaction of the ligand. Owing to the hierarchical pore structure, the adsorption capacity reaches as high as 317.6 mg/g. The enrichment during the adsorption process enhances the interaction between TC and Zr-MOF, thereby significantly improving the detection sensitivity of TC. As expected, BMAT3H5 has a LOD as low as 28 ± 0.012 nM and a KSV as high as 1.89 ± 0.001 × 106 M-1, providing excellent detection performance compared to other work in recent years. The good selectivity to TC was theoretically validated through simulations with Materials Studio software (MS). It provides a novel and practical bifunctional platform for efficient fluorescence detection and adsorption of TC, which has a broad application prospect in the fields of environmental monitoring, water treatment, and food safety testing.
Collapse
Affiliation(s)
- Zifei Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqing Deng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215000, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Huang Z, Hong Y, Cui Y, Guo H, Long Y, Ye J. Efficient adsorption of ofloxacin in a novel nanocomposite formed by nano-hexagonal boron nitride fused with zeolite imidazolite skeleton-8: Experimental and molecular dynamics simulation studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117536. [PMID: 39675073 DOI: 10.1016/j.ecoenv.2024.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
With the widespread application of antibiotics in the medical field, associated wastewater pollution has become a critical environmental issue, creating potential risks to ecosystems and public health. This study synthesized three novel nanocomposite materials, ZIF-8@h-BN-X, using an in-situ growth method by adjusting h-BN content. Compared to pure two-dimensional hexagonal boron nitride (h-BN), their adsorption capacities for ofloxacin (OFL) in solution were evaluated. Results showed that zeolitic imidazolate framework-8 (ZIF-8) attached and grew on the h-BN surface, altering surface functional groups and significantly enhancing the nanocomposite's adsorption effect on OFL. Adsorption capacity depended on the initial h-BN content, with lower X content resulting in more active sites and stronger adsorption capacity. Equilibrium adsorption capacities were 145.46, 124.91, and 58.16 mg·g-1 for X values of 29.82 %, 45.93 %, and 62.95 %, respectively. Molecular dynamics simulations revealed interaction energies of -109.13 kcal·mol-1 between ZIF-8@h-BN-X and OFL, compared to -84.78 kcal·mol-1 between pure h-BN and OFL, demonstrating the superior adsorption performance of ZIF-8@h-BN-X. OFL adsorption on ZIF-8@h-BN-X followed the Langmuir isotherm model and pseudo-second-order adsorption kinetics. Thermodynamic parameters indicated that the adsorption process of ZIF-8@h-BN-X was exothermic and spontaneous when compared to h-BN alone. This study highlights the significant potential of ZIF-8@h-BN-X in treating antibiotic-contaminated wastewater, while providing theoretical and practical insights for developing novel, efficient two-dimensional nanocomposite adsorbents.
Collapse
Affiliation(s)
- Zefang Huang
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Yuankai Hong
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Yiqun Cui
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Huiying Guo
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yan Long
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Jinshao Ye
- School of Environment and Climate, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
3
|
Kayani KF. Bimetallic metal-organic frameworks (BMOFs) for dye removal: a review. RSC Adv 2024; 14:31777-31796. [PMID: 39380644 PMCID: PMC11459228 DOI: 10.1039/d4ra06626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Safe drinking water and a clean living environment are essential for good health. However, the extensive and growing use of hazardous chemicals, particularly carcinogenic dyes like methylene blue, methyl orange, rhodamine B, and malachite green, in both domestic and industrial settings, has led to a scarcity of potable water and environmental challenges. This trend poses a serious threat to human society, sustainable global development, and marine ecosystems. Consequently, researchers are exploring more advanced methods beyond traditional wastewater treatment to address the removal or degradation of these toxic dyes. Conventional approaches are often inadequate for effectively removing dyes from industrial wastewater. In this study, we investigated bimetallic metal-organic frameworks (BMOFs) as a solution to these limitations. BMOFs demonstrated outstanding dye removal and degradation capabilities due to their multifunctionality, water stability, large surface area, adjustable pore size, and recyclability. This review provides a comprehensive overview of research on dye removal from wastewater using BMOFs, including their synthesis methods, types of dyes, and processes involved in dye removal, such as degradation and adsorption. Finally, the review discusses the future potential and emerging opportunities for BMOFs in sustainable water treatment.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Chamchamal Sulaimani 46023 Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaymaniyah Kurdistan Regional Government 46001 Iraq
| |
Collapse
|
4
|
Yan Z, Jiang S, Meng L, Lou Y, Xi J, Xiao H, Wu W. Self-supporting and hierarchical porous membrane of bacterial nanocellulose@metal-organic framework for ultra-high adsorption of Congo red. Int J Biol Macromol 2024; 277:134277. [PMID: 39089537 DOI: 10.1016/j.ijbiomac.2024.134277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method. The resulting BC@MOF composite nanofibers have a high specific surface area of 651 m2/g and can be assembled into a self-supported porous membrane (BMMCa) through vacuum filtration with the assistance of calcium ions. The addition of Ca(II) significantly enhanced the mechanical properties of the membrane through dispersion effect and electrostatic interactions, as well as enhancing its adsorption performance through the salting-out effect. The BMMCa membrane, with its hierarchical porous structure and high flux, exhibits high selectivity for Congo red (CR) with an ultra-high adsorption capacity of 3518.6 mg/g. Furthermore, the self-supporting membrane achieved rapid and convenient removal of CR through circulating filtration adsorption. The adsorption mechanism and selectivity were verified through the molecular dynamics simulation calculations by Materials Studio (MS) software. This membrane-based adsorbent, with its ultra-high adsorption capacity, good selectivity, and recycling ability, has great potential for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Zifei Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Satyam S, Patra S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024; 10:e29573. [PMID: 38699034 PMCID: PMC11064087 DOI: 10.1016/j.heliyon.2024.e29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Water contamination is an escalating emergency confronting communities worldwide. While traditional adsorbents have laid the groundwork for effective water purification, their selectivity, capacity, and sustainability limitations have driven the search for more advanced solutions. Despite many technological advancements, economic, environmental, and regulatory hurdles challenge the practical application of advanced adsorption techniques in large-scale water treatment. Integrating nanotechnology, advanced material fabrication techniques, and data-driven design enabled by artificial intelligence (AI) and machine learning (ML) have led to a new generation of optimized, high-performance adsorbents. These advanced materials leverage properties like high surface area, tailored pore structures, and functionalized surfaces to capture diverse water contaminants efficiently. With a focus on sustainability and effectiveness, this review highlights the transformative potential of these advanced materials in setting new benchmarks for water purification technologies. This article delivers an in-depth exploration of the current landscape and future directions of adsorbent technology for water remediation, advocating for a multidisciplinary approach to overcome existing barriers in large-scale water treatment applications.
Collapse
Affiliation(s)
- Satyam Satyam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
6
|
Ant Bursalı E. Novel Tannic Acid-Modified Cobalt-Based Metal-Organic Framework: Synthesis, Characterization, and Antimicrobial Activity. ACS OMEGA 2024; 9:18946-18956. [PMID: 38708246 PMCID: PMC11064010 DOI: 10.1021/acsomega.3c09169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of hybrid inorganic-organic materials with typical porous structures and a unique morphology. Due to their diversity, they are extensively used in a wide range of applications such as environmental, catalysis, biomedicine, etc. In this study, a novel cobalt-based MOF modified with tannic acid (Co-TPA/TA) (TPA: terephthalic acid; TA: tannic acid) as a promising material for antimicrobial agents was synthesized and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and thermogravimetric analysis and compared with an as-synthesized cobalt-based framework. Co-TPA/TA demonstrated good antimicrobial efficiency under optimum conditions against yeast Candida albicans ATCC 10231, Gram-negative Escherichia coli ATCC 8739, and Gram-positive Staphylococcus aureus ATCC 6538 with an inhibition zone ranging from 14 to 20 mm. Reduced ATP levels, generation of reactive oxygen species, membrane damage from cobalt ion release, and development of an alkaline microenvironment could all be contributing factors to the possible antimicrobial pathways. The novel framework can be obtained using simple, affordable, and easily accessible commercial ligands and is considered to have the potential to be used as an antimicrobial material in the future.
Collapse
Affiliation(s)
- Elif Ant Bursalı
- Department of Chemistry, Dokuz
Eylul University, Tınaztepe, Izmir 35390, Turkiye
| |
Collapse
|
7
|
Zhao Y, Yuan N, Bian D, Sun J, Qian G. Preparation of a novel CSM@ZIF-67 composite microsphere to facilitate Congo red adsorption from dyeing wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:2255-2267. [PMID: 36647896 DOI: 10.1080/09593330.2023.2169640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACTChitosan (CS) is commonly used as an adsorbent for wastewater treatment because of its low cost, strong adsorption properties, and high availability of raw materials required for its production. However, CS exhibits limited adaptability to pH, poor mechanical properties, and high swelling in aqueous media; these limitations restrict its widespread use. To address these issues, herein, zeolitic imidazolate framework-67 (ZIF-67) is loaded onto crosslinked CS microspheres (CSM) to prepare CSM@ZIF-67, a composite adsorbent. Next, the CSM@ZIF-67 is applied to the treatment of Congo red (CR) dye, which is typically present in printing and dyeing wastewater. The results demonstrate that the in situ synthesis of metal-organic frameworks (MOFs) on CSM improve the dispersion of MOFs and preserve the morphology of the MOFs. The adsorption equilibrium of CSM@ZIF-67 is reached within 150 min, and its adsorption capacity is as high as 538.4 mg/g at a pH of 9 and temperature of 25 °C. The CR adsorption process is consistent with the pseudo-second-order kinetic and Langmuir isotherm models, thus revealing that chemisorption is the primary rate-limiting step, and the pollutants are adsorbed on the adsorbent surface in a monolayer. Experiments on material cycling and regeneration performance reveal that the removal efficiency of CSM@ZIF-67 remains above 90%, even after five rounds of adsorption. CSM@ZIF-67 has abundant functional groups and adsorption sites and can efficiently remove CR through mutual interactions between the metal coordination effect, π-π conjugation, hydrogen bonding, and electrostatic interactions.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Environment Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Ning Yuan
- Department of Environment Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Di Bian
- Department of Environment Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Jianjun Sun
- Department of Environment Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, People's Republic of China
| |
Collapse
|
8
|
Chen J, Yao N, Tang Y, Xie L, Zhuo X, Jiang Z. Functional UiO-66 for highly selective adsorption of N-nitrosodipropylamine: adsorption performance and mechanisms. Dalton Trans 2024; 53:5900-5910. [PMID: 38450710 DOI: 10.1039/d3dt03058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
N-Nitrosodipropylamine (NDPA) is a class of nitrogenous disinfection by-products (N-DBPs) with high toxicity. Although NDPA present in water bodies is at relatively low concentrations, the potential risk is high due to its high toxicity and bioaccumulation. Metal-organic frameworks (MOFs), a new type of porous material with remarkable functionality, have shown great performance in a wide variety of applications in adsorption. This is the first study investigating the adsorption of MOFs on NDPA. Herein, UiO-66 with -NH2 and imidazolium functional groups were synthesized by modifying UiO-66 after amination. Adsorption kinetics and isotherm models were used to compare the adsorption properties of the two materials for low-concentration NDPA in water. The results showed that the behavior of all the adsorbents was consistent with the Langmuir model and the pseudo-second-order model and that the adsorption was homogeneous chemisorption. The structures of the nanoparticles were characterized by FTIR, zeta potential, XRD, SEM and BET measurements. Based on the characteristics, four adsorption mechanisms, namely electron conjugation, coordination reaction, anion-π interaction, and van der Waals forces, were simultaneously involved in the adsorption. The influencing factor experiment revealed that the adsorption of UiO-66-NH2 and (I-)Meim-UiO-66 involved hydrogen bonding and electrostatic interactions, respectively.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| | - Ning Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| | - Yi Tang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| | - Letian Xie
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| | - Xiong Zhuo
- Fuzhou City Construction Design & Research Institute Co., Ltd., Fuzhou, Fujian 350001, China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| |
Collapse
|
9
|
Li B, Zhang X, Shen J, Zhang A, Huang H. Bimetallic PCN-333 with Modulated Crystallization and a Porosity Structure for a Highly Efficient Removal of Congo Red. ACS OMEGA 2024; 9:7173-7187. [PMID: 38371803 PMCID: PMC10870413 DOI: 10.1021/acsomega.3c09256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/20/2024]
Abstract
Bimetallic metal-organic frameworks (BMOFs) have garnered significant attention in the field of environmental remediation due to their more diverse adsorption sites compared to monometallic metal-organic frameworks (MOFs). Different energy barriers must be overcome for different metal ions and organic linkers to form MOFs. However, the impact of the synthesis temperature on the crystallization and porosity structure of BMOFs has been rarely studied. In this work, PCN-333 series-based BMOFs with different Fe/Al ratios were prepared by a solvothermal method at temperatures of both 135 and 150 °C. The synthesis temperature and Fe/Al ratio have significant effects on the crystal structure and specific surface area of bimetallic PCN-333, leading to the different adsorption performance of the PCN-333 for Congo red (CR). The Fe/Al-PCN-333-135(3:1) and Fe-PCN-333-150 exhibited the maximum CR adsorption capacities of 3233 and 3933 mg/g, respectively, surpassing the capacities of most previously documented adsorbents. The Langmuir model and pseudo-second-order kinetics can well describe the adsorption process of CR on Fe/Al-PCN-333-135(3:1) and Fe-PCN-333-150. Combining the isotherm adsorption behavior with the thermodynamic parameters, CR adsorption on BMOFs is a single-layer endothermic chemical adsorption. Furthermore, Fe/Al-PCN-333-135(3:1) and Fe-PCN-333-150 exhibited regenerability and reusability for three cycles with reasonable efficiency. This work is of great significance in the field of engineering BMOF materials to treat dye wastewater.
Collapse
Affiliation(s)
- Boxi Li
- College of Chemistry and
Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Xufeng Zhang
- College of Chemistry and
Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Jing Shen
- College of Chemistry and
Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Aihua Zhang
- College of Chemistry and
Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - He Huang
- College of Chemistry and
Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| |
Collapse
|
10
|
Zhang Z, Zhong Y, Sun P, Zhao P, Li H, Liu X. Magnetically separable Co 0.6Fe 2.4O 4/MIL-101-NH 2 adsorbent for Congo red efficient removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9764-9783. [PMID: 38194177 DOI: 10.1007/s11356-023-31796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The development of effective and practical adsorbents for eliminating pollutants still remains a significant challenge. Herein, we synthesized a novel magnetically separable composite, Co0.6Fe2.4O4/MIL-101-NH2, through the in-situ growth of MIL-101-NH2 on magnetic nanoparticles, designed specifically for the removal of Congo red (CR) from aqueous solutions. MIL-101-NH2 possessed high BET surface area (240.485 m2•g-1) and facile magnetic separation function and can be swiftly separated (within 30 s) through an external magnetic field post-adsorption. The investigation systematically explored the influence of crucial parameters, including adsorbent dosage, pH, adsorption duration, temperature, and the presence of interfering ions, on CR adsorption performance. Findings indicate that CR adsorption adheres to the pseudo-second-order (PSO) kinetic model and the Langmuir isotherm model. Thermodynamic analysis reveals the spontaneity, endothermic nature, and orderly progression of the adsorption process. Remarkably, the adsorbent with 0.1 g•L-1 boasts an impressive maximum adsorption capacity of 1756.19 mg•g-1 for CR at 298.15 K, establishing its competitive advantage. The reuse of the adsorbent over 5 cycles remains 78% of the initial adsorption. The CR adsorption mechanisms were elucidated, emphasizing the roles of π-π interactions, electrostatic forces, hydrogen bonding, and metal coordination. Comparison with other dyes, such as methylene blue (MB) and methyl orange (MO), and exploration of adsorption performance in binary dye systems, demonstrates the superior capacity and selectivity of this adsorbent for CR. In conclusion, our magnetically separable metal-organic framework (MOF)based composite presents a versatile and effective solution for CR removal, with promising applications in water treatment and environmental remediation.
Collapse
Affiliation(s)
- Zhenhong Zhang
- School of Nursing, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Yuye Zhong
- School of Nursing, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Peng Sun
- Youyi Campus of Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Pingping Zhao
- School of Nursing, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Houbin Li
- School of Nursing, Wuhan University, Wuhan, 430079, People's Republic of China.
| | - Xinghai Liu
- Electronic Information School, Wuhan University, Wuhan, 430079, People's Republic of China
| |
Collapse
|
11
|
Molavi H, Salimi MS. Green Synthesis of Cerium-Based Metal-Organic Framework (Ce-UiO-66 MOF) for Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38032754 DOI: 10.1021/acs.langmuir.3c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Green synthesis of metal-organic frameworks (MOFs) in aqueous solutions under ambient conditions with reduced production costs and environmental effects is an efficient technique to transfer lab-scale production to industrial large scale. Hence, this work proposes a green, low-cost, sustainable, rapid, and innovative synthetic strategy to produce cerium-based (Ce-UiO-66) MOFs under ambient conditions in the presence of water as a green solvent. This synthetic strategy exhibits great potential compared to conventional solvothermal synthetic techniques, and it does not need external activation energy and organic solvents, which can achieve the standards of green chemistry. Ce-UiO-66 MOF was synthesized successfully and utilized as a green adsorbent to efficiently eliminate anionic Congo Red (CR) dye from dye-containing wastewater. The experimental adsorption results were well matched to the pseudo-second-order kinetic and Langmuir isotherm models, in which the maximum CR adsorption capacity was measured to be about 285.71 mg/g. To evidence the applicability of Ce-UiO-66 MOFs in CR adsorption, the CR adsorption reaction was performed in the presence of interfering pollutants [e.g., salts (NaCl, KCl, and MgCl2) and cationic organic dyes (Malachite Green (MG) and Methylene Blue (MB)], where the results prove the promising adsorption performances of Ce-UiO-66 MOFs toward CR dye. Interestingly, the synthesized adsorbent exhibited high structural stability during repeated adsorption-desorption cycles, where the surface area of MOFs decreased from 555 to 376 m2/g after three cycles, while its CR adsorption capacity decreased by only 10% compared to that of the fresh adsorbent. All these outstanding properties indicate that the Ce-UiO-66 MOFs will be an effective adsorbent for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| |
Collapse
|
12
|
Luo J, Luo X, Gan Y, Xu X, Xu B, Liu Z, Ding C, Cui Y, Sun C. Advantages of Bimetallic Organic Frameworks in the Adsorption, Catalysis and Detection for Water Contaminants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2194. [PMID: 37570512 PMCID: PMC10421224 DOI: 10.3390/nano13152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
The binary metal organic framework (MOF) is composed of two heterometallic ions bonded to an organic ligand. Compared with monometallic MOFs, bimetallic MOFs have greatly improved in terms of structure, porosity, active site, adsorption, selectivity, and stability, which has attracted wide attention. At present, many effective strategies have been designed for the synthesis of bimetallic MOF-based nanomaterials with specific morphology, structure, and function. The results show that bimetallic MOF-based nanocomposites could achieve multiple synergistic effects, which will greatly improve their research in the fields of adsorption, catalysis, energy storage, sensing, and so on. In this review, the main preparation methods of bimetallic MOFs-based materials are summarized, with emphasis on their applications in adsorption, catalysis, and detection of target pollutants in water environments, and perspectives on the future development of bimetallic MOFs-based nanomaterials in the field of water are presented.
Collapse
Affiliation(s)
- Jun Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiao Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiaoming Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Cheng Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Jing H, Zhao L, Song G, Li J, Wang Z, Han Y, Wang Z. Application of a Mixed-Ligand Metal-Organic Framework in Photocatalytic CO 2 Reduction, Antibacterial Activity and Dye Adsorption. Molecules 2023; 28:5204. [PMID: 37446866 DOI: 10.3390/molecules28135204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In this paper, a known mixed-ligand MOF {[Co2(TZMB)2(1,4-bib)0.5(H2O)2]·(H2O)2}n (compound 1) was reproduced, and its potential application potential was explored. It was found that compound 1 had high photocatalytic activity for CO2 reduction. After 12 h of illumination, the formation rate of CO, which is the product of CO2 reduction by compound 1, reached 3012.5 μmol/g/h. At the same time, compound 1 has a good antibacterial effect on Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albicans (C. albicans), which has potential research value in the medical field. In addition, compound 1 can effectively remove Congo Red from aqueous solutions and achieve the separation of Congo red from mixed dye solutions.
Collapse
Affiliation(s)
- Hongwei Jing
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lun Zhao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Guanying Song
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jiayu Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ziyun Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yue Han
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhexin Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
14
|
Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, Chen K, Du Q, Wang Y, Pi X, Jing Z, Jin Y. Efficient adsorption of Congo red by micro/nano MIL-88A (Fe, Al, Fe-Al)/chitosan composite sponge: Preparation, characterization, and adsorption mechanism. Int J Biol Macromol 2023; 239:124157. [PMID: 36965569 DOI: 10.1016/j.ijbiomac.2023.124157] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
MIL-88A crystals with three different metal ligands (Fe, Al, FeAl) were prepared by hydrothermal method for the first time. The three materials' crystal structure and surface morphology are different, leading to different adsorption properties of Congo red (CR). The maximum adsorption capacities of MIL-88A (Fe), MIL-88A (FeAl), and MIL-88A (Al) are 607.7 mg · g-1, 536.4 mg · g-1, and 512.1 mg · g-1 respectively. In addition, MIL-88A was combined with chitosan (CS) respectively, and MIL-88A/CS composite sponge was prepared by the freeze-drying method, which not only solved the defect that MIL-88A powder was difficult to recover but also further improved the removal ability of CR by the adsorbent. The maximum adsorption capacities of MIL-88A (FeAl)/CS, MIL-88A (Fe)/CS, MIL-88A (Al)/CS, and CS are 1312 mg · g-1, 1056 mg · g-1, 996.7 mg · g-1, and 769.6 mg · g-1, respectively. The structure and physicochemical properties of the materials were analyzed by SEM, FTIR, XRD, TGA, BET, and Zeta. The adsorption process of CR follows pseudo-second-order kinetics and Langmuir, Sips isotherm model. Combined with thermodynamic parameters, the adsorption behavior was described as endothermic monomolecular chemical adsorption. The removal of CR is attributed to electrostatic interactions, hydrogen bonding, metal coordination effects, and size-matching effects.
Collapse
Affiliation(s)
- Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
15
|
High Regeneration of ZnAl/NiAl-Magnetite Humic Acid for Adsorption of Congo Red from Aqueous Solution. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
16
|
Wang S, Liu Y, Hu Y, Shen W. A magnetic MIL-125-NH 2@chitosan composite as a separable adsorbent for the removal of Cr(VI) from wastewater. Int J Biol Macromol 2023; 226:1054-1065. [PMID: 36436607 DOI: 10.1016/j.ijbiomac.2022.11.222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Metal-organic frameworks (MOFs) are gradually used since of their huge specific surface area and superior pore structure. However, there are problems such as easy aggregation and difficult separation in water treatment. In this study, we prepared composite microspheres (FMCS-1) by modifying MIL-125-NH2 with Fe3O4 and chitosan. The structural characterization and performance analysis of the materials showed that the introduction of chitosan effectively prevents the stacking of MOFs. The magnetic test manifested that Fe3O4 solved the problem of the difficult separation of MOFs from water. The removal potential of toxic Cr(VI) was tested by adsorption experiments. The isotherm model indicated that FMCS-1 is a single molecular layer adsorbent with a maximum adsorption capacity of 109.46 mg/g at pH = 2. The adsorption kinetics showed that the adsorption of Cr(VI) by FMCS-1 was chemical adsorption. The acid resistance test demonstrated that FMCS-1 can exist stably in acid solutions. The recycling experiments proved that the adsorbent can be reused and the removal percentage still reaches 50 % after 5 cycles. This work expands the application of MOFs in water treatment and also provides an effective adsorbent for Cr(VI) removal.
Collapse
Affiliation(s)
- Shichen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yixuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yue Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weibo Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
17
|
Challa M, Chinnam S, Rajanna AM, Nandagudi A, Yallur BC, Adimule V. Adsorption efficacy of functionalized Cu-BDC MOFs tethered 2-mercaptobenzimidazole analogue: A comparative study. Heliyon 2023; 9:e13223. [PMID: 36793962 PMCID: PMC9922976 DOI: 10.1016/j.heliyon.2023.e13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A novel metal-organic framework [MOFs], and 2-[benzo [d]thiazol-2-ylthio)-3-hydroxy acrylaldehyde-Cu-benzene dicarboxylic acid was synthesized by solvothermal method and characterized using p-XRD, FSEM-EDX, TGA, BET, FTIR. The tethered organic linker, 2-[benzo [d]thiazol-2-ylthio)-3-hydroxyacrylaldehyde was commonly known as 2-mercaptobenimidazole analogue [2-MBIA]. Analysis of BET disclosed that addition of 2-MBIA to Cu-benzene dicarboxylic acid [Cu-BDC], reduced the crystallite size from 70.0 nm to 65.90 nm, surface area from 17.95 to 17.02 m2 g-1 and enhances the pore size from 5.84 nm with 0.027 cm3 g-1 pore volume to 8.74 nm with 0.361 cm3 g-1 pore volume. Batch experiments were conducted to optimize pH, adsorbent dosage, and, Congo red (CR) concentration. The adsorption percentage of CR on the novel MOFs was 54%. Adsorption kinetic studies revealed that the uptake adsorption capacity at equilibrium was 184.7 mg/g from pseudo-first-order kinetics which gave a good fit with the experimental data. Intraparticle diffusion model explained the process of the adsorption mechanism: diffusion from the bulk solution onto the porous surface of the adsorbent. Freundlich and Sips models were the best fit models of the several non-linear isotherm models. Temkin isotherm suggested the adsorption of CR on MOFs was of an exothermic nature.
Collapse
Affiliation(s)
- Malathi Challa
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
- Corresponding author.
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Ambika Madalakote Rajanna
- Department of Physics, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Apurva Nandagudi
- Department of Science & Humanities, PES University, Bengaluru 560085, Karnataka, India
| | - Basappa C. Yallur
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Vinayak Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi 591108, Karnataka, India
| |
Collapse
|
18
|
Farghali MA, Selim AM, Khater HF, Bagato N, Alharbi W, Alharbi KH, Taha Radwan I. Optimized adsorption and effective disposal of Congo red dye from wastewater: Hydrothermal fabrication of MgAl-LDH nanohydrotalcite-like materials. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Harja M, Lupu N, Chiriac H, Herea DD, Buema G. Studies on the Removal of Congo Red Dye by an Adsorbent Based on Fly-Ash@Fe3O4 Mixture. MAGNETOCHEMISTRY 2022; 8:125. [DOI: 10.3390/magnetochemistry8100125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The effectiveness of a Fe3O4-loaded fly ash composite for the adsorption of Congo red dye was assessed in this work. The structure and properties of the magnetic adsorbent were established by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). The magnetic results showed a saturation magnetization value of 6.51 emu/g and superparamagnetic behavior. The main parameters that influence the removal of Congo red dye adsorbent such as dose, initial concentration, and contact time were examined. The Freundlich adsorption isotherm and pseudo-second-order kinetic model provided the best fit for the experimental findings. The Congo red dye’s maximum adsorption capacity of 154 mg/g was reported in the concentration range of 10–100 mg/L, using the proposed magnetic adsorbent. The results of the recyclability investigation demonstrated that the circular economy idea is valid. The adsorbent that was synthesized was also further characterized by XRD and FTIR techniques after Congo red dye adsorption.
Collapse
Affiliation(s)
- Maria Harja
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Nicoleta Lupu
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | - Horia Chiriac
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | | | - Gabriela Buema
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| |
Collapse
|
20
|
Gao Q, Wei Y, Wang L, Luo R, WANG JINMIAO, Xie C, Li J, Li N, Bi S, Zhang X. Three novel Co(II)-based MOFs: Syntheses, structural diversity, and adsorption properties. CrystEngComm 2022. [DOI: 10.1039/d2ce01085b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, three new cobalt-based metal organic frameworks (MOFs) with different topologies, namely {[Co(HL)(tib)(H2O)]·2H2O}n (1), [Co3(L)2(bibp)4(H2O)2]n (2) and [Co2(L)(bip)(μ3-OH)]n (3) (H3L = 3-(3,5-dicarboxylphenoxy)-6-carboxylpyridine, tib = 1,3,5-tirs(1-imidazolyl)benzene, bibp = 4,4'-bis(imidazolyl)biphenyl,...
Collapse
|