1
|
Xiong T, Zou C, Wang H, Hu Y, Xiong Y. Cucurbit[7]uril-Modified Nano SiO 2 for Efficient Separation of Crude Oil Emulsions: Properties and Demulsification Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15178-15187. [PMID: 38990178 DOI: 10.1021/acs.langmuir.4c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Demulsification of crude oil emulsion is an obvious problem in the whole of petroleum engineering, which needs to be dealt with urgently. In this paper, a supramolecular material Cucurbit[7]uril-SiO2 (CB-SiO2) synthesized with excellent demulsification efficiency (DE) on O/W emulsion was synthesized by a simple thermal synthesis method. The microscopic morphology and structure were investigated through modern characterization techniques. Furthermore, its stability, dynamic interfacial tension (IFT), and wettability (three-phase contact angle (CA)) were systematically investigated, and the demulsification efficiency of different conditions on crude oil emulsion was also investigated. Reassuringly, these results showed that when the temperature was 70 °C, the demulsification dosage was close to 600 mg/L and remained unchanged for 90 min; the demulsification efficiency is 2.2 times compared with the unmodified material, up to 93.63%. In addition, a plausible demulsification mechanism was proposed, which is that CB-SiO2 can adsorb and disrupt the oil-water interface, leading to oil-water separation and promoting demulsification. It is a promising demulsification material for the oil industry demulsification.
Collapse
Affiliation(s)
- Tingting Xiong
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Changjun Zou
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Huihui Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Yujie Hu
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Yan Xiong
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
2
|
Fan K, Kong N, Ma J, Lin H, Gao C, Lei J, Zeng Z, Hu J, Qi J, Shen L. Enhanced management and antifouling performance of a novel NiFe-LDH@MnO 2/PVDF hybrid membrane for efficient oily wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119922. [PMID: 38150929 DOI: 10.1016/j.jenvman.2023.119922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Layered double hydroxides (LDHs) have gained significant recognition for their facile synthesis and super-hydrophilic two-dimensional (2D) structure to fabricate antifouling membranes for oily wastewater separation. However, conventional PVDF membranes, due to their hydrophobic nature and inert matrix, often exhibit insufficient permeance and compatibility. In this study, a novel NiFe-LDH@MnO2/PVDF membrane was synthesized using ultrasonic, redox, and microwave-hydrothermal processes. This innovative approach cultivated grass-like NiFe-LDH@MnO2 nanoparticles within an inert PVDF matrix, promoting the growth of highly hydrophilic composites. The presence of NiFe-LDH@MnO2 resulted in pronounced enhancements in surface morphology, interfacial wettability, and oil rejection for the fabricated membrane. The optimal NiFe-LDH@MnO2/PVDF-2 membrane exhibited an extremely high pure water flux (1364 L m-2•h-1), and increased oil rejection (from 81.2% to 93.5%) without sacrificing water permeation compared to the original PVDF membrane. Additionally, the NiFe-LDH@MnO2/PVDF membrane demonstrated remarkable antifouling properties, evident by an exceptional fouling resistance ratio of 96.8% following slight water rinsing. Mechanistic insights into the enhanced antifouling performance were elucidated through a comparative "semi-immersion" investigation. The facile synthesis method, coupled with the improved membrane performance, highlights the potential application prospects of this hybrid membrane in emulsified oily wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Kai Fan
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China.
| | - Ning Kong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jing Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Chuanyang Gao
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China.
| | - Jinshen Lei
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China.
| | - Zihang Zeng
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China.
| | - Jun Hu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; Xiangfu Laboratory, Jiashan, 314102, China.
| | - Juncheng Qi
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Zhang Z, Wang Z, Zhang H, Wang Q, Tang Y, Qu Q, Shen L, Mi Y, Yan X. An ionic liquid demulsifier with double cationic centers and multiple hydrophobic chains. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Xia X, Ma J, Geng S, Liu F, Yao M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int J Mol Sci 2022; 24:74. [PMID: 36613516 PMCID: PMC9820792 DOI: 10.3390/ijms24010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.
Collapse
Affiliation(s)
- Xiao Xia
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| |
Collapse
|