1
|
Al Amin Hossain M, Islam T, Khan JM, Joy MTR, Mahbub S, Khan SA, Ahmad A, Rahman MM, Anamul Hoque M, Kabir SE. Physicochemical parameters and modes of interaction associated with the micelle formation of a mixture of tetradecyltrimethylammonium bromide and cefixime trihydrate: effects of hydrotropes and temperature. RSC Adv 2023; 13:30429-30442. [PMID: 37854490 PMCID: PMC10580262 DOI: 10.1039/d3ra04748b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
The interaction between an antibiotic drug (cefixime trihydrate (CMT)) and a cationic surfactant (tetradecyltrimethylammonium bromide (TTAB)) was examined in the presence of both ionic and non-ionic hydrotropes (HTs) over the temperature range of 300.55 to 320.55 K. The values of the critical micelle concentration (CMC) of the TTAB + CMT mixture were experienced to have dwindled with an enhancement of the concentrations of resorcinol (ReSC), sodium benzoate (NaBz), sodium salicylate (NaS), while for the same system, a monotonically augmentation of CMC was observed in aq. 4-aminobenzoic acid (PABA) solution. A gradual increase in CMC, as a function of temperature, was also observed. The values of the degree of counterion binding (β) for the TTAB + CMT mixture were experienced to be influenced by the concentrations of ReSC/NaBz/NaS/PABA and a change in temperature. The micellization process of TTAB + CMT was observed to be spontaneous (negative standard Gibbs free energy change (ΔG0m)) at all conditions studied. Also, the values of standard enthalpy change (ΔH0m) and entropy change (ΔS0m) were found negative and positive, respectively (with a few exceptions), for the test cases indicating an exothermic and enthalpy-entropy directed micellization process. The recommended interaction forces between the components in the micellar system are electrostatic and hydrophobic interactions. In this study, the values of ΔC0m were negative in aqueous NaBz, ReSC, and PABA media, and positive in case of NaS. An excellent compensation scenario between the enthalpy and entropy for the CMT + TTAB mixed system in the investigated HTs solutions is well defined in the current work.
Collapse
Affiliation(s)
- Md Al Amin Hossain
- Department of Chemistry, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Tamanna Islam
- Department of Chemistry, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University Riyadh 11451 Saudi Arabia
| | - Md Tuhinur R Joy
- Department of Chemistry, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Shamim Mahbub
- Nuclear Safety, Security & Safeguards Division, Bangladesh Atomic Energy Regulatory Authority Agargaon Dhaka 1207 Bangladesh
| | - Salman A Khan
- Physical Sciences Section (Chemistry), School of Sciences, Maulana Azad National Urdu University Hyderabad 500032 Telangana India
| | - Anis Ahmad
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine Miami FL USA
| | | | - Md Anamul Hoque
- Department of Chemistry, Jahangirnagar University Savar Dhaka 1342 Bangladesh
| | - Shariff E Kabir
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh
| |
Collapse
|
2
|
Islam MN, Rub MA, Alotaibi MM, Joy MTR, Jahan I, Mahbub S, Rana S, Kumar D, Alfakeer M, Asiri AM, Hoque MA, Kabir SE. Investigation of the impacts of simple electrolytes and hydrotrope on the interaction of ceftriaxone sodium with cetylpyridinium chloride at numerous study temperatures. CHEMICKE ZVESTI 2023; 77:1-14. [PMID: 37362789 PMCID: PMC10199299 DOI: 10.1007/s11696-023-02856-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Herein, interactions between cetylpyridinium chloride (CPC) and ceftriaxone sodium (CTS) were investigated applying conductivity technique. Impacts of the nature of additives (e.g. electrolytes or hydrotrope (HDT)), change of temperatures (from 298.15 to 323.15 K), and concentration variation of CTS/additives were assessed on the micellization of CPC + CTS mixture. The conductometric analysis of critical micelle concentration (CMC) with respect to the concentration reveals that the CMC values were increased with the increase in CTS concentration. In terms of using different mediums, CMC did not differ much with the increase in electrolyte salt (NaCl, Na2SO4) concentration, but increased significantly with the rise of HDT (NaBenz) amount. In the presence of electrolyte, CMC showed a gentle increment with temperature, while the HDT showed the opposite trend. Obtained result was further correlated with conventional thermodynamic relationship, where standard Gibb's free energy change ( Δ G m o ) , change of enthalpy ( Δ H m o ) , and change of entropy ( Δ S m o ) were utilized to investigate. The Δ G m o values were negative for all the mixed systems studied indicating that the micellization process was spontaneous. Finally, the stability of micellization was studied by estimating the intrinsic enthalpy gain (Δ H m o , ∗ ) and compensation temperature (Tc). Here, CPC + CTS mixed system showed more stability in Na2SO4 medium than the NaCl, while in NaBenz exhibited the lowest stability.
Collapse
Affiliation(s)
- Md. Nazrul Islam
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Malik Abdul Rub
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Maha Moteb Alotaibi
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Md. Tuhinur R. Joy
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Israt Jahan
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Shamim Mahbub
- Nuclear Safety, Security and Safeguards Division, Bangladesh Atomic Energy Regulatory Authority, Dhaka, 1207 Bangladesh
| | - Shahed Rana
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Dileep Kumar
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - M. Alfakeer
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671 Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Md. Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Shariff E. Kabir
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
- Department of Chemistry, Jagannath University, Dhaka, 1100 Bangladesh
| |
Collapse
|
3
|
Alghamdi YG, Rub MA, Kumar D. Influence of twin-headed gemini micellar system on the study of methionine amino acid with ninhydrin in buffer solution. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221249. [PMID: 36816844 PMCID: PMC9929513 DOI: 10.1098/rsos.221249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The influence of double-headed gemini was examined in the present study by studying the amino acid methionine mixed with ninhydrin in CH3COOH-CH3COONa buffer solvent. The absorbance was monitored at fixed time intervals with UV-vis spectroscopy. An impact typical of surfactants was observed on the ninhydrin-methionine reaction and explained by a pseudo-phase model of micelles. The effect of different temperatures (343 to 363 K) was also determined. Based on data showing the impact of temperature on kψ , several relevant thermodynamic quantities, ΔH #, ΔS #, and E a, were calculated using linear least-squares regression. In addition, the influence of the other reaction ingredients on the reaction, that is, pH and the concentration of ninhydrin and methionine, was studied. The CMC (critical micelle concentration) of pure geminis and the surfactant system with methionine and ninhydrin was evaluated at two temperatures, i.e. at 303 K and 353 K by conductivity measurements. The CMC values of pure gemini surfactants evaluated in the existing case at 303 K are concordant with the results stated before. Moreover, other parameters, including rates and binding constants, were calculated.
Collapse
Affiliation(s)
- Yousef G. Alghamdi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Malik Abdul Rub
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Dileep Kumar
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Akter R, Anis-Ul-Haque KM, Mottalib MA, Kumar D, Joy MTR, Rana S, Hoque MA, Almutairi TM, Mohammed AAA, Iqbal A. Influences of short-chain alcohols, urea and temperature on aggregation behaviour of tetradecyltrimethylammonium bromide and antidiabetic drug mixture. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2148584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Roksanur Akter
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| | - K. M. Anis-Ul-Haque
- Department of Chemistry, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdul Mottalib
- Institute of Leather Engineering and Technology, University of Dhaka, Dhaka, Bangladesh
| | - Dileep Kumar
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Md. Tuhinur R. Joy
- Department of Chemistry, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shahed Rana
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| | - Md. Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| | | | | | - Amjad Iqbal
- Department of Advanced Materials & Technologies, Faculty of Materials Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
5
|
Hasan T, Mahbub S, Kumar D, Gatasheh MK, R. Joy MT, Goni MA, Rana S, Hoque MA. Phase separation and thermodynamics of the mixture of metformin hydrochloride + triton X-100 in ammonium salts media: impacts of composition of media. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tajmul Hasan
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| | - Shamim Mahbub
- Nuclear Safety, Security & Safeguards Division, Bangladesh Atomic Energy Regulatory Authority, Dhaka, Bangladesh
| | - Dileep Kumar
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tuhinur R. Joy
- Department of Chemistry, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdul Goni
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC, USA
| | - Shahed Rana
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| | - Md. Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Chen Y, Hao S, Xuan HZ, Li M, Kong J, Zhang Q, Liu J. Interactional, Functional and Biological Properties of Lactone Sophorolipid (LSL) and Collagen Oligopeptides (COP) in Aqueous Solution. LUMINESCENCE 2022; 37:1666-1675. [PMID: 35834479 DOI: 10.1002/bio.4338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/14/2022] [Accepted: 07/10/2022] [Indexed: 11/07/2022]
Abstract
For the mixed aqueous solution of LSL and COP, the interaction mode and mechanism have been comprehensively studied using multispectral methods including fluorescence spectrum, ultraviolet-visible adsorption spectrum (UV-Vis), and circular dichroism spectrum (CD). Then its surface activity, particle size, foaming, emulsifying, viscosity, and antibacterial properties are evaluated in detail by surface tension measurement (ST), dynamic light scattering (DLS), oscillametric method, spectrophotometer, ubbelohde viscometer and zone of inhibition separately. Compared with the single LSL or COP aqueous solution, the mixed system shows different performance optimizations in different aspects. The surface activity and foaming properties are mainly attributed to LSL, and the viscosity is attributed to COP. Fluorescence spectroscopy results show that the fluorescence distribution of COP has significant changes by the LSL addition and a static quenching mechanism is proved. The results of UV-Vis and CD spectra also show the changing conformation of COP by the LSL addition. The data of thermodynamic parameters prove that the combination of LSL and COP is a spontaneous exothermic process and is an enthalpy-driven process. The interaction mechanism between LSL and COP is very helpful for the application and development of the mixed mild biosurfactant-protein system used in the cosmetic and food industries.
Collapse
Affiliation(s)
| | - Shengyu Hao
- School of Physical Science and Information Technology
| | - Hong Zhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Mingyuan Li
- School of Chemistry and Chemical Engineering
| | - Jing Kong
- School of Chemistry and Chemical Engineering
| | - Qian Zhang
- School of Chemistry and Chemical Engineering
| | - Jie Liu
- School of Chemistry and Chemical Engineering
| |
Collapse
|