1
|
Mohammadi M, Shafiei M, Zarin T, Kazemzadeh Y, Parsaei R, Riazi M. Investigation of smoothed particle hydrodynamics (SPH) method for modeling of two-phase flow through porous medium: application for drainage and imbibition processes. Sci Rep 2024; 14:22144. [PMID: 39333685 PMCID: PMC11437126 DOI: 10.1038/s41598-024-73450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
The drainage and imbibition processes are critical mechanisms in petroleum engineering. These processes in a porous medium are controlled by surface forces and pressure gradients. The study of these processes in the pore scale by common simulators always has limitations in multiphase flow modeling. Also, obtaining relative permeability curves through laboratory analysis requires expensive equipment. Additionally, these laboratory experiments are quite expensive and may introduce significant uncertainties. For this purpose, this study investigated the creation of relative permeability curves and their effect on oil production. Initially, single-phase fluid and two-phase droplet flow within a fracture with both soft and rough surfaces were utilized to validate the formulation of the Smoothed Particle Hydrodynamics (SPH) method. Then, by using three randomly constructed porous medium models, the imbibition and drainage processes have been studied. Finally, sensitivity study has been carried out on critical parameters related to fluid flow dynamics in the porous environment, including pressure changes, wettability, and heterogeneity in drainage and imbibition processes. The simulation results were consistent with current theories; therefore, it is reasonable to consider SPH to characterize the fluid flow dynamic during the drainage and imbibition processes. According to sensitivity studies, pressure gradient (residual saturation of displaced fluid is about 5.65% and 8.44%) and heterogeneity (the residual saturation of the displaced fluid was 4.04% and 2.98%) have the largest impact on flow modeling in both drainage and imbibition processes and wettability (the residual saturation became 36.62% and 5.12%) has significant effect on the drainage process through porous medium. In general, fluid flow dynamic studies can be performed using the SPH method to model fluid flow in simple and complex porous medium under various flow conditions. The SPH method can also be used as an applicable tool to investigate the hydrocarbon fluids flow within larger geometries in the future.
Collapse
Affiliation(s)
- Masoud Mohammadi
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Masoud Shafiei
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Taha Zarin
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Yousef Kazemzadeh
- Enhanced Oil Recovery (EOR) Research Centre, IOR-EOR Research Institute, Shiraz University, Shiraz, Iran.
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
| | - Rafat Parsaei
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Masoud Riazi
- Enhanced Oil Recovery (EOR) Research Centre, IOR-EOR Research Institute, Shiraz University, Shiraz, Iran.
- School of Mining and Geosciences, Nazarbayev University, 010000, Astana, Kazakhstan.
| |
Collapse
|
2
|
Shafiei M, Kazemzadeh Y, Escrochi M, Cortés FB, Franco CA, Riazi M. A comprehensive review direct methods to overcome the limitations of gas injection during the EOR process. Sci Rep 2024; 14:7468. [PMID: 38553487 PMCID: PMC10980774 DOI: 10.1038/s41598-024-58217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Among the Enhanced Oil Recovery (EOR) methods, gas-based EOR methods are very popular all over the world. The gas injection has a high ability to increase microscopic sweep efficiency and can increase production efficiency well. However, it should be noted that in addition to all the advantages of these methods, they have disadvantages such as damage due to asphaltene deposition, unfavorable mobility ratio, and reduced efficiency of macroscopic displacement. In this paper, the gas injection process and its challenges were investigated. Then the overcoming methods of these challenges were investigated. To inhibit asphaltene deposition during gas injection, the use of nanoparticles was proposed, which were examined in two categories: liquid-soluble and gas-soluble, and the limitations of each were examined. Various methods were used to overcome the problem of unfavorable mobility ratio and their advantages and disadvantages were discussed. Gas-phase modification has the potential to reduce the challenges and limitations of direct gas injection and significantly increase recovery efficiency. In the first part, the introduction of gas injection and the enhanced oil recovery mechanisms during gas injection were mentioned. In the next part, the challenges of gas injection, which included unfavorable mobility ratio and asphaltene deposition, were investigated. In the third step, gas-phase mobility control methods investigate, emphasizing thickeners, thickening mechanisms, and field applications of mobility control methods. In the last part, to investigate the effect of nanoparticles on asphaltene deposition and reducing the minimum miscible pressure in two main subsets: 1- use of nanoparticles indirectly to prevent asphaltene deposition and reduce surface tension and 2- use of nanoparticles as a direct asphaltene inhibitor and Reduce MMP of the gas phase in crude oil was investigated.
Collapse
Affiliation(s)
- Masoud Shafiei
- IOR/EOR Research Institute, Enhanced Oil Recovery (EOR) Research Centre, Shiraz University, Shiraz, Iran
| | - Yousef Kazemzadeh
- IOR/EOR Research Institute, Enhanced Oil Recovery (EOR) Research Centre, Shiraz University, Shiraz, Iran.
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
| | - Mehdi Escrochi
- IOR/EOR Research Institute, Enhanced Oil Recovery (EOR) Research Centre, Shiraz University, Shiraz, Iran
| | - Farid B Cortés
- Grupo de Investigación en Fenómenos de Superficie, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, 050034, Medellín, Colombia
| | - Camilo A Franco
- Grupo de Investigación en Fenómenos de Superficie, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, 050034, Medellín, Colombia
| | - Masoud Riazi
- IOR/EOR Research Institute, Enhanced Oil Recovery (EOR) Research Centre, Shiraz University, Shiraz, Iran.
- School of Mining and Geosciences, Nazarbayev University, Kabanbay Batyr 53, 010000, Astana, Kazakhstan.
| |
Collapse
|
3
|
Garmsiri H, Jahani S, Kazemzadeh Y, Sharifi M, Riazi M, Azin R. Stability of the emulsion during the injection of anionic and cationic surfactants in the presence of various salts. Sci Rep 2023; 13:11337. [PMID: 37443178 DOI: 10.1038/s41598-023-38428-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Smart water injection is one of the engineering techniques to enhance oil recovery (EOR) from carbonate and sandstone reservoirs that have been widely used in recent decades. Wettability alteration and IFT are among the essential and influential mechanisms that can be mentioned to achieve EOR. One of the critical issues in the field of EOR is the effect of reservoir ions on the formation and stability of the emulsion. Investigating the role and performance of these ions during EOR processes is of significant importance. These processes are based on smart water injection and natural production. In this research, stability was investigated and formed during the injection of different concentrations of anionic and cationic surfactants, respectively alpha olefin sulfonate (AOS) and cetrimonium bromide (CTAB), into a water-oil emulsion with a volume ratio of 30-70. Considering the droplet diameter distribution and the flow speed of separation by centrifugation, the optimal concentration level has been investigated in both surfactants. Based on the results, the highest stability and emulsion formation occurred in the presence of AOS surfactant. Then different concentrations of CaCl2, MgCl2, and NaCl salts were added in optimal concentrations of both surfactants. The formation and stability of the emulsion was checked by examining the distribution of the droplet diameter and the separation flow rate. AOS anionic surfactant had the most stability in the presence of MgCl2 salt, and better performance in stability of the emulsion was obtained. The maximum number of droplet diameters in the optimal concentration for AOS and CTAB surfactant systems is 1010 and 880, respectively, and for binary systems of AOS surfactant and MgCl2, CaCl2 and NaCl salts, it is 2200, 1120 and 1110, respectively. Furthermore, for the CTAB binary system in the presence of MgCl2, CaCl2, and NaCl salts, it is 1200, 1110, and 1100, respectively. The stability of the emulsion of salts in the presence of both AOS and CTAB surfactants was MgCl2 > CaCl2 > NaCl.
Collapse
Affiliation(s)
- Hamid Garmsiri
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
- Enhanced Oil Recovery (EOR) Research Centre, IOR EOR Research Institute, Shiraz University, Shiraz, Iran
| | - Shahriar Jahani
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Yousef Kazemzadeh
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
- Persian Gulf University-Northeast Petroleum University of China Joint Research Laboratory, Oil and Gas Research Center, Persian Gulf University, Bushehr, Iran.
| | - Mohammad Sharifi
- Department of Petroleum Engineering, Amirkabir University of Technology, Tehran Polytechnic, Tehran, Iran
| | - Masoud Riazi
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
- Enhanced Oil Recovery (EOR) Research Centre, IOR EOR Research Institute, Shiraz University, Shiraz, Iran.
| | - Reza Azin
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
- Persian Gulf University-Northeast Petroleum University of China Joint Research Laboratory, Oil and Gas Research Center, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
4
|
Shafiei M, Kazemzadeh Y, Martyushev DA, Dai Z, Riazi M. Effect of chemicals on the phase and viscosity behavior of water in oil emulsions. Sci Rep 2023; 13:4100. [PMID: 36907931 PMCID: PMC10008830 DOI: 10.1038/s41598-023-31379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Due to population growth, the need for energy, especially fossil fuels, is increased every year. Since the costs of exploring new reservoirs and drilling new wells are very high, most reservoirs have passed their first and second periods of life, and it is necessary to use EOR methods. Water-based enhanced oil recovery (EOR) methods are one of the popular methods in this field. In this method, due to the possibility of emulsion formation is high, and by creating a stable emulsion, viscosity and mobility improved. In this study, the parameters affecting the stability and viscosity of the emulsion have been investigated step by step. In the first step, 50% (v/v) of water has been selected as the best water cut. The type of salt and its best concentration was evaluated in the second step by measuring the average droplets size. The third step investigated the effect of SiO2 nanoparticles and surfactant (span80) on emulsion stability and viscosity. According to the results, the best amount of water cut was 50% due to the maximum viscosity. In salts the yield was as follows: MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl. The best yield was related to MgCl2 at a concentration of 10,000 ppm. Finally, it was shown that the synergy of nanoparticles and surfactants resulted in higher stability and viscosity than in the case where each was used alone. It should be noted that the optimal concentration of nanoparticles is equal to 0.1% (w/w), and the optimal concentration of surfactant is equal to 200 ppm. In general, a stable state was obtained in 50% water-cut with MgCl2 salt at a concentration of 10,000 ppm and in the presence of SiO2 nanoparticles at a concentration of 0.1% and span 80 surfactants at a concentration of 200 ppm. The results obtained from this study provide important insights for optimal selection of the water-based EOR operation parameters. Viscosity showed a similar trend with stability and droplet size. As the average particle size decreased (or stability increased), the emulsion viscosity increased.
Collapse
Affiliation(s)
- Masoud Shafiei
- Enhanced Oil Recovery Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Yousef Kazemzadeh
- Enhanced Oil Recovery Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
| | - Dmitriy A Martyushev
- Department of Oil and Gas Technologies, Perm National Research Polytechnic University, Perm, 614990, Russia
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun, China
| | - Masoud Riazi
- Enhanced Oil Recovery Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
5
|
Chen Q, Liu Y, Hou J, Li X, Wei B, Du Q. Phase Transition Characteristics of Heavy Oil-Viscosity Reducer-Water Emulsion Systems. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Nematizadeh Haghighi A, Nabipour M, Azdarpour A, Honarvar B. Mechanistic Investigation of Using Optimum Saline Water in Carbonate Reservoirs Low Asphaltenic Crude Oil with High Resin Content: A Carbonate-Coated Microfluidic Study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
He M, Pu W, Yang X, Liu R. Predicting the emulsion phase inversion point during self-emulsification using an improved free energy model and determining the model applicability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|