1
|
Specific Focus on Antifungal Peptides against Azole Resistant Aspergillus fumigatus: Current Status, Challenges, and Future Perspectives. J Fungi (Basel) 2022; 9:jof9010042. [PMID: 36675863 PMCID: PMC9864941 DOI: 10.3390/jof9010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The prevalence of fungal infections is increasing worldwide, especially that of aspergillosis, which previously only affected people with immunosuppression. Aspergillus fumigatus can cause allergic bronchopulmonary aspergillosis and endangers public health due to resistance to azole-type antimycotics such as fluconazole. Antifungal peptides are viable alternatives that combat infection by forming pores in membranes through electrostatic interactions with the phospholipids as well as cell death to peptides that inhibit protein synthesis and inhibit cell replication. Engineering antifungal peptides with nanotechnology can enhance the efficacy of these therapeutics at lower doses and reduce immune responses. This manuscript explains how antifungal peptides combat antifungal-resistant aspergillosis and also how rational peptide design with nanotechnology and artificial intelligence can engineer peptides to be a feasible antifungal alternative.
Collapse
|
2
|
Zong X, Cheng Y, Xiao X, Fu J, Wang F, Lu Z, Wang Y, Jin M. Protective effects of sulfated polysaccharide from Enterobacter cloacae Z0206 against DSS-induced intestinal injury via DNA methylation. Int J Biol Macromol 2021; 183:861-869. [PMID: 33940061 DOI: 10.1016/j.ijbiomac.2021.04.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
We previously obtained and characterized a novel sulfated derivative of the exopolysaccharides from Enterobacter cloacae Z0206 (SEPS). This study aimed at investigating the effects and mechanism of SEPS against dextran sulfate sodium (DSS) induced intestinal injury. The results showed that SEPS increased the proliferation and survival of intestinal epithelial cells during DSS stimulation. Furthermore, SEPS maintained the barrier function and inflammatory response via JAK2 and MAPK signaling to protect against DSS-induced intestinal injury. Mechanistically, SEPS elevated the DNA methylation in the promoter region to negatively regulate the JAK2 and MAPKs expression. Thus, the current study shows the potential effects and mechanism of SEPS on DSS-induced intestinal epithelial cell injury.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| |
Collapse
|
3
|
Phage vaccines displaying YGKDVKDLFDYAQE epitope induce protection against systemic candidiasis in mouse model. Vaccine 2018; 36:5717-5724. [PMID: 30111514 DOI: 10.1016/j.vaccine.2018.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 07/29/2018] [Accepted: 08/05/2018] [Indexed: 01/29/2023]
Abstract
Candida albicans is a common commensal and opportunistic fungal pathogen in human, which poses threat to human health, especially in immunocompromised patients. Unfortunately, few effective prophylactic and therapeutic strategies were applied to clinic practice. Recently, the peptide YGKDVKDLFDYAQE from Fructose-bisphosphate aldolase 1 (Fba1), as a vaccine, was reported to induce protection effects against systemic candidiasis. Here, we displayed this epitope peptide on the coat proteins (pIII or pVIII) of filamentous phage, and investigated their protective effects against C. albicans infections. Mice were immunized with recombinant phages (designated as phage-3F and phage-8F) or protein (rFba1), then challenged with C. albicans yeast cells via lateral tail vein. Results demonstrated that the recombinant phages as well as rFba1 apparently induced humoral and cellular immune responses, reduced fungal burden and relieved kidney damage in infected mice and significantly improved their survival rates. Briefly, all these findings indicated that the recombinant phages displaying the epitope YGKDVKDLFDYAQE have the potential to be developed into a new vaccine against C. albicans infections.
Collapse
|
4
|
Abstract
Glycosylation is an important post-translational modification that is required for structural and stability purposes and functional roles such as signalling, attachment and shielding. Many human pathogens such as bacteria display an array of carbohydrates on their surface that are non-self to the host; others such as viruses highjack the host-cell machinery and present self-carbohydrates sometimes arranged in a non-self more immunogenic manner. In combination with carrier proteins, these glycan structures can be highly immunogenic. During natural infection, glycan-binding antibodies are often elicited that correlate with long-lasting protection. A great amount of research has been invested in carbohydrate vaccine design to elicit such an immune response, which has led to the development of vaccines against the bacterial pathogens Haemophilus influenzae type b, Streptococcus pneumonia and Neisseria meningitidis. Other vaccines, e.g. against HIV-1, are still in development, but promising progress has been made with the isolation of broadly neutralizing glycan-binding antibodies and the engineering of stable trimeric envelope glycoproteins. Carbohydrate vaccines against other pathogens such as viruses (Dengue, Hepatitis C), parasites (Plasmodium) and fungi (Candida) are at different stages of development. This chapter will discuss the challenges in inducing cross-reactive carbohydrate-targeting antibodies and progress towards carbohydrate vaccines.
Collapse
|
5
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
6
|
Gow NAR, Latge JP, Munro CA. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0035-2016. [PMID: 28513415 PMCID: PMC11687499 DOI: 10.1128/microbiolspec.funk-0035-2016] [Citation(s) in RCA: 668] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
7
|
Detection of Multidrug-Resistant Fungal Infections in Cancer Patients. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Enhanced virulence of Histoplasma capsulatum through transfer and surface incorporation of glycans from Cryptococcus neoformans during co-infection. Sci Rep 2016; 6:21765. [PMID: 26908077 PMCID: PMC4764860 DOI: 10.1038/srep21765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans (Cn) and Histoplasma capsulatum (Hc) co-exist in the environment and occasionally co-infect individuals, which can lead to severe disease/lethal outcomes. We investigated specific interactions between Cn-Hc to determine the impact of synchronous infection in virulence and disease. Co-infected mice had significantly higher mortality than infection with either species or acapsular Cn-Hc. Coating of Hc with cryptococcal glycans (Cn-gly) resulted in higher pulmonary fungal burden in co-infected animals relative to control. Co-cultivation or addition of Cn-gly resulted in enhanced pellicle formation with a hybrid polysaccharide matrix with higher reactivity to GXM mAbs. Transfer and incorporation of Cn polysaccharide onto Hc surface was time and temperature dependent. Cn-gly transfer altered the zeta potential of Hc and was associated with increased resistance to phagocytosis and killing by macrophages. Mice infected with Hc and subsequently injected with purified Cn-gly died significantly more rapidly than Hc alone infected, establishing the precedent that virulence factors from one fungus can enhance the virulence of unrelated species. These findings suggest a new mechanism of microbial interaction involving the transfer of virulence traits that translates into enhanced lethality during mixed fungal infections and highlights the importance of studying heterogeneous microbial populations in the setting of infection.
Collapse
|
9
|
Tsvetkov YE, Khatuntseva EA, Yashunsky DV, Nifantiev NE. Synthetic β-(1→3)-d-glucooligosaccharides: model compounds for the mechanistic study of β-(1→3)-d-glucan bioactivities and design of antifungal vaccines. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-0969-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Cassone A, Torosantucci A. Opportunistic fungi and fungal infections: the challenge of a single, general antifungal vaccine. Expert Rev Vaccines 2014; 5:859-67. [PMID: 17184223 DOI: 10.1586/14760584.5.6.859] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A vaccine made up by an algal beta-glucan (laminarin), conjugated with a protein component, protects against infections by different fungi and induces antibodies capable of inhibiting fungal growth. Although taking a premium on a common molecular theme, this remains a sort of 'cross-kingdom' vaccine because the immunizing antigen and the vaccination target belong to organisms from two different kingdoms and this is certainly the first case in the field of human vaccines. Thus, it is possible to convey in a single immunological tool the potential to protect against multiple infections, in theory all those caused by beta-glucan-expressing fungi. The generation of antibodies with the potential to directly inhibit the growth of, or kill the fungal cells also opens an exciting perspective for both active and passive vaccination in immunocompromised subjects.
Collapse
Affiliation(s)
- Antonio Cassone
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immuno-mediated Diseases, Viale Regina Elena, Rome, Italy.
| | | |
Collapse
|
11
|
Albuquerque PC, Cordero RJB, Fonseca FL, Peres da Silva R, Ramos CL, Miranda KR, Casadevall A, Puccia R, Nosanchuk JD, Nimrichter L, Guimaraes AJ, Rodrigues ML. A Paracoccidioides brasiliensis glycan shares serologic and functional properties with cryptococcal glucuronoxylomannan. Fungal Genet Biol 2012; 49:943-54. [PMID: 23010152 DOI: 10.1016/j.fgb.2012.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 01/04/2023]
Abstract
The cell wall of the yeast form of the dimorphic fungus Paracoccidioides brasiliensis is enriched with α1,3-glucans. In Cryptococcus neoformans, α1,3-glucans interact with glucuronoxylomannan (GXM), a heteropolysaccharide that is essential for fungal virulence. In this study, we investigated the occurrence of P. brasiliensis glycans sharing properties with cryptococcal GXM. Protein database searches in P. brasiliensis revealed the presence of sequences homologous to those coding for enzymes involved in the synthesis of GXM and capsular architecture in C. neoformans. In addition, monoclonal antibodies (mAbs) raised to cryptococcal GXM bound to P. brasiliensis cells. Using protocols that were previously established for extraction and analysis of C. neoformans GXM, we recovered a P. brasiliensis glycan fraction composed of mannose and galactose, in addition to small amounts of glucose, xylose and rhamnose. In comparison with the C. neoformans GXM, the P. brasiliensis glycan fraction components had smaller molecular dimensions. The P. brasiliensis components, nevertheless, reacted with different GXM-binding mAbs. Extracellular vesicle fractions of P. brasiliensis also reacted with a GXM-binding mAb, suggesting that the polysaccharide-like molecule is exported to the extracellular space in secretory vesicles. An acapsular mutant of C. neoformans incorporated molecules from the P. brasiliensis extract onto the cell wall, resulting in the formation of surface networks that resembled the cryptococcal capsule. Coating the C. neoformans acapsular mutant with the P. brasiliensis glycan fraction resulted in protection against phagocytosis by murine macrophages. These results suggest that P. brasiliensis and C. neoformans share metabolic pathways required for the synthesis of similar polysaccharides and that P. brasiliensis yeast cell walls have molecules that mimic certain aspects of C. neoformans GXM. These findings are important because they provide additional evidence for the sharing of antigenically similar components across phylogenetically distant fungal species. Since GXM has been shown to be important for the pathogenesis of C. neoformans and to elicit protective antibodies, the finding of similar molecules in P. brasiliensis raises the possibility that these glycans play similar functions in paracoccidiomycosis.
Collapse
Affiliation(s)
- Priscila C Albuquerque
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lipinski T, Wu X, Sadowska J, Kreiter E, Yasui Y, Cheriaparambil S, Rennie R, Bundle DR. A β-mannan trisaccharide conjugate vaccine aids clearance of Candida albicans in immunocompromised rabbits. Vaccine 2012; 30:6263-9. [DOI: 10.1016/j.vaccine.2012.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/01/2012] [Accepted: 08/05/2012] [Indexed: 02/07/2023]
|
13
|
Rodrigues ML, Nimrichter L. In good company: association between fungal glycans generates molecular complexes with unique functions. Front Microbiol 2012; 3:249. [PMID: 22787459 PMCID: PMC3391692 DOI: 10.3389/fmicb.2012.00249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/20/2012] [Indexed: 01/13/2023] Open
Abstract
The biological properties of fungal immunogens have historically utilized testing of isolated molecules. Recent findings, however, indicate that fungal glycans differing in structure and function can interact to form hybrid complexes with unique properties. In the pathogenic yeast Cryptococcus neoformans, chitin-like molecules associate with capsular glucuronoxylomannan (GXM) to form functionally distinct glycan complexes. Such interactions between glycans that result in the formation of structures with different functions strongly suggest that additional molecular complexes with unknown properties may exist in fungal pathogens. Moreover, the identification of these novel complexes has stimulated the search of new immunogens with potential to protect human and animal hosts against systemic mycoses.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Fundação Oswaldo Cruz - Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde Rio de Janeiro, Brazil
| | | |
Collapse
|
14
|
Chitin-like molecules associate with Cryptococcus neoformans glucuronoxylomannan to form a glycan complex with previously unknown properties. EUKARYOTIC CELL 2012; 11:1086-94. [PMID: 22562469 DOI: 10.1128/ec.00001-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties.
Collapse
|
15
|
Intravitreally implantable voriconazole delivery system for experimental fungal endophthalmitis. Retina 2012; 31:1791-800. [PMID: 21606889 DOI: 10.1097/iae.0b013e31820d3cd2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate the therapeutic efficacy and optimal drug dose of an intravitreally implantable voriconazole (VCZ) drug delivery system (DDS) in experimental endophthalmitis of Aspergillus fumigatus. METHODS Vitrectomy was performed in albino rabbits with intravitreal inoculation of susceptible A. fumigatus. The animals were randomized into groups of control, polylactic-co-glycolic acid implantation, VCZ injection, and intravitreal VCZ DDS containing 0.5, 0.9, and 1.2 mg of VCZ, respectively. The therapeutic effect was assessed by clinical observation, histology, and microbiology. RESULTS The inflammation in the VCZ injection and DDS groups was milder than the untreated and polylactic-co-glycolic acid groups (P ≤ 0.046). The 0.9-mg and 1.2-mg DDS groups presented milder anterior chamber and vitreous inflammation than the injection group during the first 3 weeks (P ≤ 0.044), but only the 1.2-mg DDS group had clearer vitreous thereafter (P ≤ 0.037). Smear and fungal culture showed negative results in all DDS groups. Normal histologic structure of the retina was observed in the eyes recovering from endophthalmitis. CONCLUSION The therapeutic effect of intravitreal VCZ DDS on fungal endophthalmitis appears to be significantly better than intravitreal injection of VCZ. The optimal dose of VCZ in the DDS in this study was 1.2 mg.
Collapse
|
16
|
Pitman SK, Drew RH, Perfect JR. Addressing current medical needs in invasive fungal infection prevention and treatment with new antifungal agents, strategies and formulations. Expert Opin Emerg Drugs 2011; 16:559-586. [DOI: 10.1517/14728214.2011.607811] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Cabezas J, Albaina O, Montañez D, Sevilla MJ, Moragues MD, Pontón J. Potential of anti-Candida antibodies in immunoprophylaxis. Immunotherapy 2010; 2:171-83. [PMID: 20635926 DOI: 10.2217/imt.09.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The need for new options for the treatment of invasive candidiasis has fuelled the use of antibodies in combination with conventional antifungal therapy. After a long period of time in which antibodies were considered irrelevant in the resistance against invasive candidiasis, it was demonstrated that a number of antibodies or their engineered derivatives directed against Candida albicans cell-wall polysaccharides and glycopeptides, as well as against some protein epitopes, confer protection against invasive candidiasis. This has confirmed this approach as a new strategy for the prophylaxis of invasive candidiasis. Of particular interest is Mycograb, a human recombinant monoclonal antibody that inhibits heat shock protein 90, and has been administrated in combination with lipid-associated amphotericin B to patients with invasive candidiasis, and the fungicidal anti-beta-glucan antibodies induced by the glycoconjugate vaccine composed of a beta-glucan polysaccharide conjugated with the diphtheria toxoid CRM 197. However, despite the promising data obtained in vitro and in animal models, at present there is very little clinical experience on the use of antibodies in Candida immunoprophylaxis.
Collapse
Affiliation(s)
- Jonathan Cabezas
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Vizcaya, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design. This is enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. Here, we review the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer cells for vaccine purposes.
Collapse
|
19
|
Abstract
Invasive fungal infections with primary and opportunistic mycoses have become increasingly common in recent years and pose a major diagnostic and therapeutic challenge. They represent a major area of concern in today's medical fraternity. The occurrence of invasive fungal diseases, particularly in AIDS and other immunocompromised patients, is life-threatening and increases the economic burden. Apart from the previously known polyenes and imidazole-based azoles, newly discovered triazoles and echinocandins are more effective in terms of specificity, yet some immunosuppressed hosts are difficult to treat. The main reasons for this include antifungal resistance, toxicity, lack of rapid and microbe-specific diagnoses, poor penetration of drugs into sanctuary sites, and lack of oral or intravenous preparations. In addition to combination antifungal therapy, other novel antimycotic treatments such as calcineurin signaling pathway blockers and vaccines have recently emerged. This review briefly summarizes recent developments in the pharmacotherapeutic treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Bijoy P Mathew
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
20
|
Synthetic glycopeptide vaccines combining beta-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci U S A 2008; 105:13526-31. [PMID: 18725625 DOI: 10.1073/pnas.0803195105] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first fully synthetic glycopeptide vaccines against a fungal disease have been used to combat disseminated candidiasis in mice. Six T cell peptides found in Candida albicans cell wall proteins were selected by algorithm peptide epitope searches; each was synthesized and conjugated to the fungal cell wall beta-mannan trisaccharide [beta-(Man)(3)] by novel saccharide-peptide linker chemistry to create glycopeptide conjugates. The six proteins were selected because of expression during human candidiasis and cell wall association and included: fructose-bisphosphate aldolase (Fba); methyltetrahydropteroyltriglutamate (Met6); hyphal wall protein-1 (Hwp1); enolase (Enol); glyceraldehyde-3-phosphate dehydrogenase (Gap1); and phosphoglycerate kinase (Pgk1). By immunization protocols favoring production of protective antibody, the beta-(Man)(3)-Fba, beta-(Man)(3)-Met6 and beta-(Man)(3)-Hwp1 induced protection evidenced by survival and reduced kidney fungal burden, the beta-(Man)(3)-Eno1 and beta-(Man)(3)-Gap1 gave moderate protection, and the beta-(Man)(3)-Pgk1 slightly enhanced disease. For the beta-(Man)(3)-Fba conjugate, protection was uniquely acquired through immunity against the carbohydrate and the Fba peptide. This approach based on fully synthetic chemically defined immunogens should be generally useful in vaccine development.
Collapse
|
21
|
Hamad M. Antifungal Immunotherapy and Immunomodulation: A Double-hitter Approach to Deal with Invasive Fungal Infections. Scand J Immunol 2008; 67:533-43. [DOI: 10.1111/j.1365-3083.2008.02101.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Attempts at a peptide vaccine against paracoccidioidomycosis, adjuvant to chemotherapy. Mycopathologia 2008; 165:341-52. [DOI: 10.1007/s11046-007-9056-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Fungal vaccines: real progress from real challenges. THE LANCET. INFECTIOUS DISEASES 2008; 8:114-24. [DOI: 10.1016/s1473-3099(08)70016-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Cutler JE, Deepe GS, Klein BS. Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 2007; 5:13-28. [PMID: 17160002 PMCID: PMC2214303 DOI: 10.1038/nrmicro1537] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dramatic increase in fungal diseases in recent years can be attributed to the increased aggressiveness of medical therapy and other human activities. Immunosuppressed patients are at risk of contracting fungal diseases in healthcare settings and from natural environments. Increased prescribing of antifungals has led to the emergence of resistant fungi, resulting in treatment challenges. These concerns, together with the elucidation of the mechanisms of protective immunity against fungal diseases, have renewed interest in the development of vaccines against the mycoses. Most research has used murine models of human disease and, as we review in this article, the knowledge gained from these studies has advanced to the point where the development of vaccines targeting human fungal pathogens is now a realistic and achievable goal.
Collapse
Affiliation(s)
- Jim E. Cutler
- Departments of Pediatrics and Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences, and Research Institute for Children at Children’s Hospital, New Orleans, Louisiana, 70118 USA
| | - George S. Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267–0560 USA
| | - Bruce S. Klein
- Departments of Pediatrics, Internal Medicine, and Medical Microbiology and Immunology and the University of Wisconsin Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792 USA
| |
Collapse
|
25
|
Fungal Vaccines and Vaccination: Problems and Perspectives. IMMUNOLOGY OF FUNGAL INFECTIONS 2007. [PMCID: PMC7121605 DOI: 10.1007/1-4020-5492-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccines against human pathogenic fungi, a rather neglected medical need until few years ago, are now gaining steps in the public health priority scale. The awareness of the rising medical threat represented by the opportunistic fungal infections among the health care-associated infections, the advances in the knowledge of fungal pathogenicity and immune response and the extraordinary progress of biotechnology have generated enthusiasm and critical new tools for active and passive anti-fungal vaccination. The discovery that antibodies play a critical role for protection against fungal infection has greatly contributed to the advancements in this field, in recognition that almost all useful vaccines against viral and bacterial pathogens owe their protective efficacy to neutralizing, opsonizing or otherwise effective antibodies. Overall, there is more hope now than few years ago about the chances of generating and having approved by the regulatory authorities one or more antifungal vaccines, be active or passive, for use in humans in the next few years. In particular, the possibility of protecting against multiple opportunistic mycoses in immuno-depressed subjects with a single, well-defined glucan-conjugate vaccine eliciting directly anti-fungal antibodies may be an important step to achieve this public health goal
Collapse
|
26
|
Sexton AC, Howlett BJ. Parallels in fungal pathogenesis on plant and animal hosts. EUKARYOTIC CELL 2006; 5:1941-9. [PMID: 17041185 PMCID: PMC1694825 DOI: 10.1128/ec.00277-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Adrienne C Sexton
- School of Botany, the University of Melbourne, Parkville, VIC 3010, Australia
| | | |
Collapse
|