1
|
Stein C. Effects of pH on opioid receptor activation and implications for drug design. Biophys J 2024; 123:4158-4166. [PMID: 38970252 PMCID: PMC11700362 DOI: 10.1016/j.bpj.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
G-protein-coupled receptors are integral membrane proteins that transduce chemical signals from the extracellular matrix into the cell. Traditional drug design has considered ligand-receptor interactions only under normal conditions. However, studies on opioids indicate that such interactions are very different in diseased tissues. In such microenvironments, protons play an important role in structural and functional alterations of both ligands and receptors. The pertinent literature strongly suggests that future drug design should take these aspects into account in order to reduce adverse side effects while preserving desired effects of novel compounds.
Collapse
Affiliation(s)
- Christoph Stein
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Experimental Anaesthesiology, Berlin, Germany.
| |
Collapse
|
2
|
Yang H, Wang Y, Liu W, He T, Liao J, Qian Z, Zhao J, Cong Z, Sun D, Liu Z, Wang C, Zhu L, Chen S. Genome-wide pan-GPCR cell libraries accelerate drug discovery. Acta Pharm Sin B 2024; 14:4296-4311. [PMID: 39525595 PMCID: PMC11544303 DOI: 10.1016/j.apsb.2024.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in mediating diverse physiological and pathological processes, rendering them promising targets for drug discovery. GPCRs account for about 40% of FDA-approved drugs, representing the most successful drug targets. However, only approximately 15% of the 800 human GPCRs are targeted by market drugs, leaving numerous opportunities for drug discovery among the remaining receptors. Cell expression systems play crucial roles in the GPCR drug discovery field, including novel target identification, structural and functional characterization, potential ligand screening, signal pathway elucidation, and drug safety evaluation. Here, we discuss the principles, applications, and limitations of widely used cell expression systems in GPCR-targeted drug discovery, GPCR function investigation, signal pathway characterization, and pharmacological property studies. We also propose three strategies for constructing genome-wide pan-GPCR cell libraries, which will provide a powerful platform for GPCR ligand screening, and facilitate the study of GPCR mechanisms and drug safety evaluation, ultimately accelerating the process of GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongfu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Taiping He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayu Liao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- The Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongzhi Qian
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jinghao Zhao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingping Zhu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Gómez-Melero S, Caballero-Villarraso J. CCR6 as a Potential Target for Therapeutic Antibodies for the Treatment of Inflammatory Diseases. Antibodies (Basel) 2023; 12:30. [PMID: 37092451 PMCID: PMC10123731 DOI: 10.3390/antib12020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a G protein-coupled receptor (GPCR) involved in a wide range of biological processes. When CCR6 binds to its sole ligand CCL20, a signaling network is produced. This pathway is implicated in mechanisms related to many diseases, such as cancer, psoriasis, multiple sclerosis, HIV infection or rheumatoid arthritis. The CCR6/CCL20 axis plays a fundamental role in immune homeostasis and activation. Th17 cells express the CCR6 receptor and inflammatory cytokines, including IL-17, IL-21 and IL-22, which are involved in the spread of inflammatory response. The CCL20/CCR6 mechanism plays a crucial role in the recruitment of these pro-inflammatory cells to local tissues. To date, there are no drugs against CCR6 approved, and the development of small molecules against CCR6 is complicated due to the difficulty in screenings. This review highlights the potential as a therapeutic target of the CCR6 receptor in numerous diseases and the importance of the development of antibodies against CCR6 that could be a promising alternative to small molecules in the treatment of CCR6/CCL20 axis-related pathologies.
Collapse
Affiliation(s)
- Sara Gómez-Melero
- Maimonides Biomedical Research Institute of Cordoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Biomedical Research Institute of Cordoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
5
|
Das A, Imanishi Y. Drug Discovery Strategies for Inherited Retinal Degenerations. BIOLOGY 2022; 11:1338. [PMID: 36138817 PMCID: PMC9495580 DOI: 10.3390/biology11091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development.
Collapse
Affiliation(s)
- Arupratan Das
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Li Q, Yin G, Wang J, Li L, Liang Q, Zhao X, Chen Y, Zheng X, Zhao X. An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Muratspahić E, Retzl B, Duerrauer L, Freissmuth M, Becker CFW, Gruber CW. Genome Mining-Based Discovery of Blenny Fish-Derived Peptides Targeting the Mouse κ-Opioid Receptor. Front Pharmacol 2021; 12:773029. [PMID: 34744752 PMCID: PMC8569185 DOI: 10.3389/fphar.2021.773029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past years, peptides have attracted increasing interest for G protein-coupled receptor (GPCR) drug discovery and development. Peptides occupy a unique chemical space that is not easily accessible for small molecules and antibodies and provide advantages over these ligand classes such as lower toxicity and higher selectivity. The κ-opioid receptor (KOR) is a prototypic GPCR and an appealing therapeutic target for the development of safer and more effective analgesics. Recently, peptides have emerged as analgesic drug candidates with improved side effect profiles. We have previously identified plant-derived peptides, which activate KOR. Based on this precedent, here we relied on publicly available databases to discover novel KOR peptide ligands by genome mining. Using human preprodynorphin as a query, we identified blenny fish-derived peptides, referred to as blenniorphins, capable of binding to and activating KOR with nanomolar affinity and potency, respectively. Additionally, the blenniorphins altered β-arrestin-2 recruitment at the KOR. Our study demonstrates the utility of genome mining to identify peptide GPCR ligands with intriguing pharmacological properties and unveils the potential of blenny fishes as a source for novel KOR ligands.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Duerrauer
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Gómez-Melero S, García-Maceira FI, García-Maceira T, Luna-Guerrero V, Montero-Peñalvo G, Túnez-Fiñana I, Paz-Rojas E. Amino terminal recognition by a CCR6 chemokine receptor antibody blocks CCL20 signaling and IL-17 expression via β-arrestin. BMC Biotechnol 2021; 21:41. [PMID: 34225700 PMCID: PMC8259436 DOI: 10.1186/s12896-021-00699-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background CCR6 chemokine receptor is an important target in inflammatory diseases. Th17 cells express CCR6 and a number of inflammatory cytokines, including IL-17 and IL-22, which are involved in the propagation of inflammatory immune responses. CCR6 antagonist would be a potential treatment for inflammatory diseases such as psoriasis or rheumatoid arthritis. The aim of this study is to develop an antagonistic monoclonal antibody (mAb) against human CCR6 receptor (hCCR6). Results We generate monoclonal antibodies against hCCR6 immunizing Balb/c mice with hCCR6 overexpressing cells. The antibodies were tested by flow cytometry for specific binding to hCCR6, cloned by limiting dilution and resulted in the isolation and purification monoclonal antibody 1C6. By ELISA and flow cytometry, was determined that the antibody obtained binds to hCCR6 N-terminal domain. The ability of 1C6 to neutralize hCCR6 signaling was tested and we determined that 1C6 antibody were able to block response in β-arrestin recruitment assay with IC50 10.23 nM, but did not inhibit calcium mobilization. In addition, we found in a chemotaxis assay that 1C6 reduces the migration of hCCR6 cells to their ligand CCL20. Finally, we determined by RT-qPCR that the expression of IL-17A in Th17 cells treated with 1C6 was inhibited. Conclusions In the present study, we applied whole cell immunization for successfully obtain an antibody that is capable to neutralize hCCR6 signaling and to reduce hCCR6 cells migration and IL-17 expression. These results provide an efficient approach to obtain therapeutic potential antibodies in the treatment of CCR6-mediated inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00699-2.
Collapse
Affiliation(s)
- Sara Gómez-Melero
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain.
| | - Fé Isabel García-Maceira
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - Tania García-Maceira
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - Verónica Luna-Guerrero
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - Gracia Montero-Peñalvo
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - Isaac Túnez-Fiñana
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Elier Paz-Rojas
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| |
Collapse
|
9
|
Ambrose AJ, Pham NT, Sivinski J, Guimarães L, Mollasalehi N, Jimenez P, Abad MA, Jeyaprakash AA, Shave S, Costa-Lotufo LV, La Clair JJ, Auer M, Chapman E. A two-step resin based approach to reveal survivin-selective fluorescent probes. RSC Chem Biol 2021; 2:181-186. [PMID: 34458780 PMCID: PMC8342005 DOI: 10.1039/d0cb00122h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/07/2020] [Indexed: 01/24/2023] Open
Abstract
The identification of modulators for proteins without assayable biochemical activity remains a challenge in chemical biology. The presented approach adapts a high-throughput fluorescence binding assay and functional chromatography, two protein-resin technologies, enabling the discovery and isolation of fluorescent natural product probes that target proteins independently of biochemical function. The resulting probes also suggest targetable pockets for lead discovery. Using human survivin as a model, we demonstrate this method with the discovery of members of the prodiginine family as fluorescent probes to the cancer target survivin.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Nhan T Pham
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | - Jared Sivinski
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Larissa Guimarães
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
- Departamento de Farmacologia, Universidade de São Paulo São Paulo SP 05508-900 Brazil
| | - Niloufar Mollasalehi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Paula Jimenez
- Instituto do Mar, Universidade Federal de São Paulo Santos SP 11.070-100 Brazil
| | - Maria A Abad
- Wellcome Centre for Cell Biology, University of Edinburgh Edinburgh EH9 3BF UK
| | | | - Steven Shave
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | | | - James J La Clair
- Xenobe Research Institute P. O. Box 3052 San Diego CA 92163-1052 USA
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
10
|
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6:7. [PMID: 33414387 PMCID: PMC7790836 DOI: 10.1038/s41392-020-00435-w] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.
Collapse
Affiliation(s)
- Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanshan Qin
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Elita Yuliantie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
11
|
Abarghooi Kahaki F, Monzavi S, Bamehr H, Bandani E, Payandeh Z, Jahangiri A, Khalili S. Expression and Purification of Membrane Proteins in Different Hosts. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Nielsen CDT, Dhasmana D, Floresta G, Wohland T, Cilibrizzi A. Illuminating the Path to Target GPCR Structures and Functions. Biochemistry 2020; 59:3783-3795. [PMID: 32956586 DOI: 10.1021/acs.biochem.0c00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-Protein-coupled receptors (GPCRs) are ubiquitous within eukaryotes, responsible for a wide array of physiological and pathological processes. Indeed, the fact that they are the most drugged target in the human genome is indicative of their importance. Despite the clear interest in GPCRs, most information regarding their activity has been so far obtained by analyzing the response from a "bulk medium". As such, this Perspective summarizes some of the common methods for this indirect observation. Nonetheless, by inspecting approaches applying super-resolution imaging, we argue that imaging is perfectly situated to obtain more detailed structural and spatial information, assisting in the development of new GPCR-targeted drugs and clinical strategies. The benefits of direct optical visualization of GPCRs are analyzed in the context of potential future directions in the field.
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, U.K
| | - Divya Dhasmana
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Giuseppe Floresta
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| |
Collapse
|
13
|
The discovery of a new antibody for BRIL-fused GPCR structure determination. Sci Rep 2020; 10:11669. [PMID: 32669569 PMCID: PMC7363855 DOI: 10.1038/s41598-020-68355-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
G-protein-coupled receptors (GPCRs)—the largest family of cell-surface membrane proteins—mediate the intracellular signal transduction of many external ligands. Thus, GPCRs have become important drug targets. X-ray crystal structures of GPCRs are very useful for structure-based drug design (SBDD). Herein, we produced a new antibody (SRP2070) targeting the thermostabilised apocytochrome b562 from Escherichia coli M7W/H102I/R106L (BRIL). We found that a fragment of this antibody (SRP2070Fab) facilitated the crystallisation of the BRIL-tagged, ligand bound GPCRs, 5HT1B and AT2R. Furthermore, the electron densities of the ligands were resolved, suggesting that SPR2070Fab is versatile and adaptable for GPCR SBDD. We anticipate that this new tool will significantly accelerate structure determination of other GPCRs and the design of small molecular drugs targeting them.
Collapse
|
14
|
Affiliation(s)
- Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
15
|
Purification of native CCL7 and its functional interaction with selected chemokine receptors. Protein Expr Purif 2020; 171:105617. [PMID: 32145391 DOI: 10.1016/j.pep.2020.105617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/01/2020] [Indexed: 11/21/2022]
Abstract
Chemokine receptors form a major sub-family of G protein-coupled receptors (GPCRs) and they are involved in a number of cellular and physiological processes related to our immune response and regulation. A better structural understanding of ligand-binding, activation, signaling and regulation of chemokine receptors is very important to design potentially therapeutic interventions for human disorders arising from aberrant chemokine signaling. One of the key limitations in probing the structural details of chemokine receptors is the availability of large amounts of purified, homogenous and fully functional chemokine ligands, and the commercially available products, are not affordable for in-depth structural studies. Moreover, production of uniformly isotope-labeled chemokines, for example, suitable for NMR-based structural investigation, also remains challenging. Here, we have designed a streamlined approach to express and purify the human chemokine CCL7 as well as its 15N-, 15N/13C-, 2H/15N/13C- isotope-labeled derivatives, at milligram levels using E. coli expression system. Purified CCL7 not only maintains a well-folded three-dimensional structure as analyzed using circular dichroism and 1H/15N NMR but it also induces coupling of heterotrimeric G-proteins and β-arrestins for selected chemokine receptors in cellular system. We compared cAMP response induced by histidine tagged CCL7 and native CCL7 and found that modification of the N-terminus of CCL7 compromises its functionality. Our strategy presented here may be applicable to other chemokines and therefore, provide a potentially generic and cost-effective approach to produce chemokines in large amounts for functional and structural studies.
Collapse
|
16
|
Li J, Ge Y, Huang JX, Strømgaard K, Zhang X, Xiong XF. Heterotrimeric G Proteins as Therapeutic Targets in Drug Discovery. J Med Chem 2019; 63:5013-5030. [PMID: 31841625 DOI: 10.1021/acs.jmedchem.9b01452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric G proteins are molecular switches in GPCR signaling pathways and regulate a plethora of physiological and pathological processes. GPCRs are efficient drug targets, and more than 30% of the drugs in use target them. However, selectively targeting an individual GPCR may be undesirable in various multifactorial diseases in which multiple receptors are involved. In addition, abnormal activation or expression of G proteins is frequently associated with diseases. Furthermore, G proteins harboring mutations often result in malignant diseases. Thus, targeting G proteins instead of GPCRs might provide alternative approaches for combating these diseases. In this review, we discuss the biochemistry of heterotrimeric G proteins, describe the G protein-associated diseases, and summarize the currently known modulators that can regulate the activities of G proteins. The outlook for targeting G proteins to treat diverse diseases is also included in this manuscript.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Jun-Xiang Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
17
|
Role of cholesterol-mediated effects in GPCR heterodimers. Chem Phys Lipids 2019; 227:104852. [PMID: 31866438 DOI: 10.1016/j.chemphyslip.2019.104852] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that mediate a large number of cellular responses. The organization of GPCRs into dimers and higher-order oligomers is known to allow a larger repertoire of downstream signaling events. In this context, a crosstalk between the adenosine and dopamine receptors has been reported, indicating the presence of heterodimers that are functionally relevant. In this paper, we explored the effect of membrane cholesterol on the adenosine2A (A2A) and dopamine D3 (D3) receptors using coarse-grain molecular dynamics simulations. We analyzed cholesterol interaction sites on the A2A receptor and were able to reproduce the sites indicated by crystallography and previous atomistic simulations. We predict novel cholesterol interaction sites on the D3 receptor that could be important in the reported cholesterol sensitivity in receptor function. Further, we analyzed the formation of heterodimers between the two receptors. Our results suggest that membrane cholesterol modulates the relative population of several co-existing heterodimer conformations. Both direct receptor-cholesterol interaction and indirect membrane effects contribute toward the modulation of heterodimer conformations. These results constitute one of the first examples of modulation of GPCR hetero-dimerization by membrane cholesterol, and could prove to be useful in designing better therapeutic strategies.
Collapse
|
18
|
Gao X, Yang L, Bai Y, Li Q, Zhao X, Bian L, Zheng X. Screening of bioactive components from traditional Chinese medicine by immobilized β 2 adrenergic receptor coupled with high performance liquid chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1134-1135:121782. [PMID: 31778946 DOI: 10.1016/j.jchromb.2019.121782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
Traditional Chinese medicine (TCM) represents a valuable resource for lead compounds discovery. Given the complexity of TCM components, analytical methods play a key role in novel drug development. In our study, we established a high specific and reliable bio-active components screen system, where β2 adrenergic receptor (β2-AR) was immobilized on silica by non-covalent bonds and packed into a stainless steel column (4.6 × 50 mm, 7 μm) to form β2-AR chromatography column. The column was further coupled with high performance liquid chromatography-time of flight tandem mass spectrometry (TOF-MS/MS). By utilizing this strategy, we successfully identified four β2-AR-targeting compounds: tetrahydroberberine, tetrahydrocolumbamine, fumarine and corydaline from Corydalis Rhizome. The association constants between β2-AR and tetrahydroberberine (9.04 × 104/M) as well as fumarine (4.30 × 104/M) were determined by frontal chromatography. We also found that these two compounds shared the identical binding site on immobilized β2-AR with corresponding concentrations of 6.67 × 10-4 M and 5.88 × 10-4 M, respectively. The newly established method represents an efficient tool to identify the target specific natural compounds.
Collapse
Affiliation(s)
- Xiaokang Gao
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Shiyan 442000, Hubei, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an 710069, China
| | - Lingjian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an 710069, China
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an 710069, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an 710069, China.
| |
Collapse
|
19
|
Li Y, Sun Y, Song Y, Dai D, Zhao Z, Zhang Q, Zhong W, Hu LA, Ma Y, Li X, Wang R. Fragment-Based Computational Method for Designing GPCR Ligands. J Chem Inf Model 2019; 60:4339-4349. [PMID: 31652060 DOI: 10.1021/acs.jcim.9b00699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, which is arguably the most important family of drug target. With the technology breakthroughs in X-ray crystallography and cryo-electron microscopy, more than 300 GPCR-ligand complex structures have been publicly reported since 2007, covering about 60 unique GPCRs. Such abundant structural information certainly will facilitate the structure-based drug design by targeting GPCRs. In this study, we have developed a fragment-based computational method for designing novel GPCR ligands. We first extracted the characteristic interaction patterns (CIPs) on the binding interfaces between GPCRs and their ligands. The CIPs were used as queries to search the chemical fragments derived from GPCR ligands, which were required to form similar interaction patterns with GPCR. Then, the selected chemical fragments were assembled into complete molecules by using the AutoT&T2 software. In this work, we chose β-adrenergic receptor (β-AR) and muscarinic acetylcholine receptor (mAChR) as the targets to validate this method. Based on the designs suggested by our method, samples of 63 compounds were purchased and tested in a cell-based functional assay. A total of 15 and 22 compounds were identified as active antagonists for β2-AR and mAChR M1, respectively. Molecular dynamics simulations and binding free energy analysis were performed to explore the key interactions (e.g., hydrogen bonds and π-π interactions) between those active compounds and their target GPCRs. In summary, our work presents a useful approach to the de novo design of GPCR ligands based on the relevant 3D structural information.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Yaping Sun
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., Shanghai 201210, People's Republic of China
| | - Yunpeng Song
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., Shanghai 201210, People's Republic of China
| | - Dongcheng Dai
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., Shanghai 201210, People's Republic of China
| | - Zhixiong Zhao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Qing Zhang
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., Shanghai 201210, People's Republic of China
| | - Wenge Zhong
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., Shanghai 201210, People's Republic of China
| | - Liaoyuan A Hu
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., Shanghai 201210, People's Republic of China
| | - Yingli Ma
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., Shanghai 201210, People's Republic of China
| | - Xun Li
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., Shanghai 201210, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.,Shanxi Key Laboratory of Innovative Drugs for the Treatment of Serious Diseases Basing on Chronic Inflammation, College of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, People's Republic of China
| |
Collapse
|
20
|
Zou Y, Ewalt J, Ng HL. Recent Insights from Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery. Int J Mol Sci 2019; 20:E4237. [PMID: 31470676 PMCID: PMC6747122 DOI: 10.3390/ijms20174237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are critical drug targets. GPCRs convey signals from the extracellular to the intracellular environment through G proteins. Some ligands that bind to GPCRs activate different downstream signaling pathways. G protein activation, or -arrestin biased signaling, involves ligands binding to receptors and stabilizing conformations that trigger a specific pathway. -arrestin biased signaling has become a hot target for structure-based drug discovery. However, challenges include that there are few crystal structures available in the Protein Data Bank and that GPCRs are highly dynamic. Hence, molecular dynamics (MD) simulations are especially valuable for obtaining detailed mechanistic information, including identification of allosteric sites and understanding modulators' interactions with receptors and ligands. Here, we highlight recent MD simulation studies and enhanced sampling methods used to study biased G protein-coupled receptor signaling and their conformational dynamics as well as applications to drug discovery.
Collapse
Affiliation(s)
- Ye Zou
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - John Ewalt
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
21
|
Syed Haneef SA, Ranganathan S. Structural bioinformatics analysis of variants on GPCR function. Curr Opin Struct Biol 2019; 55:161-177. [PMID: 31174013 DOI: 10.1016/j.sbi.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
G protein-coupled receptors (GPCRs) are key membrane-embedded receptor proteins, with critical roles in cellular signal transduction. In the era of precision medicine, understanding the role of natural variants on GPCR function is critical, especially from a pharmacogenomics viewpoint. Studies involved in mapping variants to GPCR structures are briefly reviewed here. The endocannabinoid system involving the central nervous system (CNS), the human cannabinoid receptor 1 (CB1), is an important drug target and its variability has implications for disease susceptibility and altered drug and pain response. We have carried out a computational study to map deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) to CB1. CB1 mutations were computationally evaluated from neutral to deleterious, and the top twelve deleterious mutations, with structural information, were found to be either close to the ligand binding region or the G-protein binding site. We have mapped these to the active and inactive CB1 X-ray crystallographic structures to correlate variants with available phenotypic information. We have also carried out molecular dynamics simulations to functionally characterize four selected mutants.
Collapse
Affiliation(s)
- Syed Askar Syed Haneef
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
22
|
Wang J, Yang Y, Cao Y, Tang X. miR‑342 inhibits glioma cell proliferation by targeting GPRC5A. Mol Med Rep 2019; 20:252-260. [PMID: 31115523 PMCID: PMC6579993 DOI: 10.3892/mmr.2019.10242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/09/2019] [Indexed: 11/26/2022] Open
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) play a key role in the biological behaviors and progression of glioma. However, the function and bio-molecular mechanisms of miR-342 in glioma remain largely unclear. In the present study, reverse transcription quantitative-polymerase chain reaction and western blotting were performed to determine the mRNA and protein expression levels of the factors investigated. MTT assay was performed to examine the proliferation rates. Luciferase reporter assay was performed to test the binding between miRNA-342 and its putative target. Data indicated that miR-342 expression was markedly decreased in human glioma tissues and cell line U87, and reduced miR-342 expression significantly promoted cell proliferation. In order to explore the mechanisms, G-protein coupled receptor family C group 5 member A (GPRC5A) was identified as a target of miR-342 and depletion of GPRC5A suppressed cell proliferation. Our findings demonstrated that miR-342 regulates the cell proliferation of glioma by targeting GPRC5A, which indicates that miR-342 is a target of interest regarding the treatment of refractory glioma, and it may provide a promising prognostic and therapeutic strategy for glioma treatment.
Collapse
Affiliation(s)
- Jianjiao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinyu Tang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
23
|
Advantages and shortcomings of cell-based electrical impedance measurements as a GPCR drug discovery tool. Biosens Bioelectron 2019; 137:33-44. [PMID: 31077988 DOI: 10.1016/j.bios.2019.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) transduce extracellular signals and activate intracellular pathways, usually through activating associated G proteins. Due to their involvement in many human diseases, they are recognized worldwide as valuable drug targets. Many experimental approaches help identify small molecules that target GPCRs, including in vitro cell-based reporter assays and binding studies. Most cell-based assays use one signaling pathway or reporter as an assay readout. Moreover, they often require cell labeling or the integration of reporter systems. Over the last decades, cell-based electrical impedance biosensors have been explored for drug discovery. This label-free method holds many advantages over other cellular assays in GPCR research. The technology requires no cell manipulation and offers real-time kinetic measurements of receptor-mediated cellular changes. Instead of measuring the activity of a single reporter, the impedance readout includes information on multiple signaling events. This is beneficial when screening for ligands targeting orphan GPCRs since the signaling cascade(s) of the majority of these receptors are unknown. Due to its sensitivity, the method also applies to cellular models more relevant to disease, including patient-derived cell cultures. Despite its advantages, remaining issues regarding data comparability and interpretability has limited implementation of cell-based electrical impedance (CEI) in drug discovery. Future optimization must include both full exploitation of CEI response data using various ways of analysis as well as further exploration of its potential to detect biased activities early on in drug discovery. Here, we review the contribution of CEI technology to GPCR research, discuss its comparative benefits, and provide recommendations.
Collapse
|
24
|
Muratspahić E, Freissmuth M, Gruber CW. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends Pharmacol Sci 2019; 40:309-326. [PMID: 30955896 DOI: 10.1016/j.tips.2019.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) represent important drug targets, as they regulate pivotal physiological processes and they have proved to be readily druggable. Natural products have been and continue to be amongst the most valuable sources for drug discovery and development. Here, we surveyed small molecules and (poly-)peptides derived from plants, animals, fungi, and bacteria, which modulate GPCR signaling. Among naturally occurring compounds, peptides from plants, cone-snails, snakes, spiders, scorpions, fungi, and bacteria are of particular interest as lead compounds for the development of GPCR ligands, since they cover a chemical space, which differs from that of synthetic small molecules. Peptides, however, face challenges, some of which can be overcome by studying plant-derived compounds. We argue here that the opportunities outweigh the challenges.
Collapse
Affiliation(s)
- Edin Muratspahić
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria; Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Christian W Gruber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
25
|
|
26
|
Xiong X, Zhang H, Boesgaard MW, Underwood CR, Bräuner‐Osborne H, Strømgaard K. Structure–Activity Relationship Studies of the Natural Product G
q/11
Protein Inhibitor YM‐254890. ChemMedChem 2019; 14:865-870. [DOI: 10.1002/cmdc.201900018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Xiao‐Feng Xiong
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Hang Zhang
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical SafetySchool of Pharmaceutical SciencesZhengzhou University 100 Kexue Avenue Zhengzhou Henan 450001 China
| | - Michael W. Boesgaard
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
| | - Christina R. Underwood
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
| | - Kristian Strømgaard
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
| |
Collapse
|
27
|
|
28
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
29
|
Burgos CF, Sanchéz C, Sepúlveda C, Fuentes E, Palomo I, Alarcón M. Anti-aggregation effect on platelets of Indiplon a hypnotic sedative non-benzodiazepine drug. Biomed Pharmacother 2018; 111:378-385. [PMID: 30594050 DOI: 10.1016/j.biopha.2018.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/04/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022] Open
Abstract
Cardiovascular diseases are one of the main public health problems, and many of them, their pathophysiology involves alterations in platelet activity. Platelet activation is an essential event that is regulated by the intracellular concentrations of Ca2+ and cAMP. Interestingly, it has been shown that the activation of adenosine A2A receptors increases cAMP levels and produces the inhibition of platelet aggregation, which appears as a potential target for regulation of platelet activity. Therefore, we tried to activate A2A receptors using Indiplon, a drug developed for the treatment of insomnia, and analyze its effect on platelet activity in vitro. Our results indicate that Indiplon is able to interact in silico with the adenosine A2A receptor (ΔGbind of -73.321 kcal/mol, similar to that obtained with adenosine), which is involved in the regulation of platelet cAMP levels. In functional studies using PRP, a reduction in platelet aggregation induced by ADP was observed in the presence of Indiplon at 500 μM with a percentage of inhibition 70%, where the use of specific inhibitors (ZM241385 and MSX-2) of the A2A receptor also blocked these effects reducing the percentage of inhibition to 41% and 34.1%, respectively. Also, the use of Indiplon produced a decrease in the expression in the membrane of P-selectin. Thus, Indiplon acts as an A2A receptor agonist and whose activation results in inhibition of platelet aggregation and activation, showing a possible cardiovascular protective role.
Collapse
Affiliation(s)
- C F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - C Sanchéz
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile
| | - C Sepúlveda
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - E Fuentes
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - I Palomo
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - M Alarcón
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile.
| |
Collapse
|
30
|
Abstract
G protein-coupled receptors (GPCRs) constitute a large class of cell surface receptors that recognize a wide array of ligands and mediate a diverse spectrum of signaling pathways. Measuring their surface expression in cellular context is a critical aspect of studying their signaling pathways and cellular outcomes. Upon addition of agonist, GPCRs typically undergo internalization and traffic from the plasma membrane to endosomal compartments. Although radioligand binding has been the primary assay to measure GPCR surface expression and internalization, whole-cell ELISA has now emerged as a powerful alternative approach. Here, we present a step-by-step whole-cell ELISA protocol for measuring relative surface expression and agonist-induced internalization of GPCRs containing engineered N-terminal epitope tag and recombinantly expressed in heterologous cells.
Collapse
|
31
|
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 2018; 18:59-82. [PMID: 30410121 DOI: 10.1038/nrd.2018.180] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 826 G protein-coupled receptors (GPCRs) in the human proteome regulate key physiological processes and thus have long been attractive drug targets. With the crystal structures of more than 50 different human GPCRs determined over the past decade, an initial platform for structure-based rational design has been established for drugs that target GPCRs, which is currently being augmented with cryo-electron microscopy (cryo-EM) structures of higher-order GPCR complexes. Nuclear magnetic resonance (NMR) spectroscopy in solution is one of the key approaches for expanding this platform with dynamic features, which can be accessed at physiological temperature and with minimal modification of the wild-type GPCR covalent structures. Here, we review strategies for the use of advanced biochemistry and NMR techniques with GPCRs, survey projects in which crystal or cryo-EM structures have been complemented with NMR investigations and discuss the impact of this integrative approach on GPCR biology and drug discovery.
Collapse
|
32
|
Carmona-Rosas G, Alcántara-Hernández R, Hernández-Espinosa DA. The role of β-arrestins in G protein-coupled receptor heterologous desensitization: A brief story. Methods Cell Biol 2018; 149:195-204. [PMID: 30616820 DOI: 10.1016/bs.mcb.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that have an important impact in a myriad of cellular functions. Posttranslational modifications on GPCRs are a key processes that allow these proteins to recruit other intracellular molecules. Among these modifications, phosphorylation is the most important way of desensitization of these receptors. Several research groups have described two different desensitization mechanisms: heterologous and homologous desensitization. The first one involves the phosphorylation of the receptors by protein kinases, such as PKC, following the desensitization and internalization of the receptor, while the second one involves the phosphorylation of the receptors by GRKs, allowing for the receptor to recruit β-arrestins to be desensitized and internalized. Interestingly, a few number of studies have described the participation of β-arrestins during the heterologous desensitization process. Hence, the aim of this review is to briefly explore the role that β-arrestins play during the heterologous desensitization of several GPCRs.
Collapse
|
33
|
Illuminating GPCR Signaling by Cryo-EM. Trends Cell Biol 2018; 28:591-594. [DOI: 10.1016/j.tcb.2018.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/11/2023]
|
34
|
In vivo biosensors: mechanisms, development, and applications. ACTA ACUST UNITED AC 2018; 45:491-516. [DOI: 10.1007/s10295-018-2004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Abstract
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.
Collapse
|
35
|
The Effect of GPRC5a on the Proliferation, Migration Ability, Chemotherapy Resistance, and Phosphorylation of GSK-3β in Pancreatic Cancer. Int J Mol Sci 2018; 19:ijms19071870. [PMID: 29949874 PMCID: PMC6073545 DOI: 10.3390/ijms19071870] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PaCa) is the fourth leading cause of cancer-related death, and personalized targeted cancer therapy is becoming a promising treatment strategy for PaCa. The central approach of targeted therapy is to find a targetable key and an effective targeting method. In this study, the importance of GPRC5a (the G-protein-coupled receptor family C, member 5, group A) was identified using data mining methods based on published datasets. After analysis of the basic expression of GPRC5a in normal pancreas tissue and various PaCa cell lines, gene editing of GPRC5a in the human PaCa cell line MIA PaCa-2 and the mouse PaCa cell line TB32047 was performed using CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins 9) to investigate the influence of GPRC5a on the proliferation and migration of PaCa cells as well as its effects on chemotherapy drug resistance. The results showed that GPRC5a was upregulated in PaCa tissues and various PaCa cell lines. Knockout of GPRC5a reduced the proliferation and migration ability of PaCa cell lines and suppressed the chemotherapy drug resistance of gemcitabine, oxaliplatin, and fluorouracil in PaCa cells. The phosphorylation of GSK-3β (Glycogen synthase kinase-3β) was found to be upregulated in the MIA PaCa-2 and TB32047 cells after GPRC5a knockout. In conclusion, GPRC5a was upregulated in PaCa leading to an enhanced drug resistance in PaCa cells. These results provide for the first time a theoretical basis for the development of an improved PaCa targeted therapy.
Collapse
|
36
|
Popov P, Peng Y, Shen L, Stevens RC, Cherezov V, Liu ZJ, Katritch V. Computational design of thermostabilizing point mutations for G protein-coupled receptors. eLife 2018; 7:34729. [PMID: 29927385 PMCID: PMC6013254 DOI: 10.7554/elife.34729] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/05/2018] [Indexed: 12/02/2022] Open
Abstract
Engineering of GPCR constructs with improved thermostability is a key for successful structural and biochemical studies of this transmembrane protein family, targeted by 40% of all therapeutic drugs. Here we introduce a comprehensive computational approach to effective prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based analysis, structural information, and a derived machine learning predictor. Tested experimentally on the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing mutations, with an apparent thermostability gain ~8.8°C for the best single mutation and ~13°C for a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor, with total gains of ~21°C as compared to wild type apo 5-HT2C. The predicted mutations enabled crystallization and structure determination for the 5-HT2C receptor complexes in inactive and active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural studies, further improvements are expected with accumulation of structural and mutation data. The trillions of cells in the human body rely on receptors that sit in their cell membranes to communicate with each other. Hundreds of different receptors belong to the G protein-coupled receptor superfamily (called GPCRs for short) and play vital roles in the all organs and bodily systems. Indeed, GPCRs are the targets for almost 40% of therapeutic drugs. As such, deciphering the shape and activity of GPCRs is key to understanding the normal workings of the human biology and could help scientists discover new treatments for various diseases, from depression to high blood pressure to cancer. These receptors, however, are notoriously flimsy and unstable, making them difficult to work with in the laboratory. Different approaches have been developed to make GPCRs more stable, usually by swapping one or a few of the amino acid building blocks in the protein for other amino acids. Currently, this requires a costly and slow trial-and-error approach in which each amino acid out of 300-400 in the protein is mutated and tested experimentally. To speed up and reduce the cost of the process, Popov et al. asked if a computer could predict which mutations in the protein would stabilize it, meaning that fewer proteins would actually need to be tested. Four computer algorithms based on four different principles were developed and verified. The first one compares the target GPCR to other closely related receptors, trying to detect variations that cause the instability. The second tries to build in specific stabilizing interactions, or “bridges”, between different parts of the receptor. The third algorithm searches the known structures of other GPCRs for useful mutations. Finally, the fourth one uses accumulated data on the stability of hundreds of mutations in different GPCRs to train a machine learning predictor to recognize stabilizing mutations. All four algorithms produced useful predictions in a real-life project. Indeed, when combined in one computational tool, named CompoMug, the algorithms made it possible to detect optimal mutations in a human GPCR called 5-HT2C. This made the protein much easier to work with in the laboratory, and ultimately helped to solve its three-dimensional structure (which was reported in a separate study, published earlier in 2018) The 5-HT2C receptor is involved in regulating, among other things, mood and appetite. Details of its structure might therefore help researchers to design new antidepressants and obesity treatments. Moreover, CompoMug is already helping structural biologists to solve the structures of other GPCRs, which will further facilitate many aspects of GPCR drug discovery.
Collapse
Affiliation(s)
- Petr Popov
- Department of Biological Sciences, University of Southern California, Los Angeles, Los Angeles, United States.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Yao Peng
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ling Shen
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Raymond C Stevens
- Department of Biological Sciences, University of Southern California, Los Angeles, Los Angeles, United States.,iHuman Institute, ShanghaiTech University, Shanghai, China.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, United States.,Bridge Institute, University of Southern California, Los Angeles, Los Angeles, United States
| | - Vadim Cherezov
- Department of Biological Sciences, University of Southern California, Los Angeles, Los Angeles, United States.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, United States.,Bridge Institute, University of Southern California, Los Angeles, Los Angeles, United States
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Insititute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Vsevolod Katritch
- Department of Biological Sciences, University of Southern California, Los Angeles, Los Angeles, United States.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, United States.,Bridge Institute, University of Southern California, Los Angeles, Los Angeles, United States
| |
Collapse
|
37
|
Gabr MT, Abdel-Raziq MS. Pharmacophore-based tailoring of biphenyl amide derivatives as selective 5-hydroxytryptamine 2B receptor antagonists. MEDCHEMCOMM 2018; 9:1069-1075. [PMID: 30108996 PMCID: PMC6072314 DOI: 10.1039/c8md00204e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/17/2018] [Indexed: 11/21/2022]
Abstract
We designed and synthesized a new biphenyl amide-tryptamine hybrid molecule 7 utilizing a pharmacophore-based approach as a 5-HT2B antagonist. The hybrid compound 7 was evaluated for its affinity to a panel of seven 5-HT receptors, demonstrating high selectivity for the 5-HT2B receptor. Functional assays revealed potent antagonism of 5-HT2B by 7 with an IC50 value of 14.1 nM. Moreover, compound 7 possessed a desirable in vitro pharmacokinetic profile and maintained its antagonistic potency in the presence of physiological concentrations of serum proteins. The design approach implemented in this investigation would facilitate the development of a second generation of highly selective and potent 5-HT2B antagonists.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Medicinal Chemistry , Faculty of Pharmacy , Mansoura University , Mansoura 35516 , Egypt
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , USA . ; Tel: +1 3193599500
| | - Mohammed S Abdel-Raziq
- Department of Pharmacognosy , Faculty of Pharmacy , Mansoura University , Mansoura 35516 , Egypt
- School of Chemistry and Molecular Biosciences , University of Queensland , St Lucia 4072 , Queensland , Australia
| |
Collapse
|
38
|
Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL, Shukla AK. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. Trends Biochem Sci 2018; 43:533-546. [PMID: 29735399 DOI: 10.1016/j.tibs.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/12/2023]
Abstract
G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology.
Collapse
Affiliation(s)
- Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Justin Schilling
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
39
|
Dwivedi H, Baidya M, Shukla AK. GPCR Signaling: The Interplay of Gαi and β-arrestin. Curr Biol 2018; 28:R324-R327. [DOI: 10.1016/j.cub.2018.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Qin S, Meng M, Yang D, Bai W, Lu Y, Peng Y, Song G, Wu Y, Zhou Q, Zhao S, Huang X, McCorvy JD, Cai X, Dai A, Roth BL, Hanson MA, Liu ZJ, Wang MW, Stevens RC, Shui W. High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. Chem Sci 2018; 9:3192-3199. [PMID: 29732102 PMCID: PMC5916221 DOI: 10.1039/c7sc04698g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/19/2018] [Indexed: 12/24/2022] Open
Abstract
High-throughput identification of GPCR modulators through affinity MS screening.
G protein-coupled receptors (GPCRs) represent the largest class of cell surface proteins and thus constitute an important family of therapeutic targets. Therefore, significant effort has been put towards the identification of novel ligands that can modulate the activity of a GPCR target with high efficacy and selectivity. However, due to limitations inherent to the most common techniques for GPCR ligand discovery, there is a pressing need for more efficient and effective ligand screening methods especially for the identification of potential allosteric modulators. Here we present a high-throughput, label-free and unbiased screening approach for the identification of small molecule ligands towards GPCR targets based on affinity mass spectrometry. This new approach features the usage of target-expressing cell membranes rather than purified proteins for ligand screening and allows the detection of both orthosteric and allosteric ligands targeting specific GPCRs. Screening a small compound library with this approach led to the rapid discovery of an antagonist for the 5-HT receptor and four positive allosteric modulators for GLP-1 receptor that were not previously reported.
Collapse
Affiliation(s)
- Shanshan Qin
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China .
| | - Mengmeng Meng
- College of Pharmacy , Nankai University , 300071 , Tianjin , China
| | - Dehua Yang
- The National Center for Drug Screening , The CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 201203 , Shanghai , China .
| | - Wenwen Bai
- College of Pharmacy , Nankai University , 300071 , Tianjin , China
| | - Yan Lu
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China . .,School of Life Science and Technology , ShanghaiTech University , 201202 , Shanghai , China
| | - Yao Peng
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China .
| | - Gaojie Song
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China .
| | - Yiran Wu
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China .
| | - Qingtong Zhou
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China .
| | - Suwen Zhao
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China . .,School of Life Science and Technology , ShanghaiTech University , 201202 , Shanghai , China
| | - Xiping Huang
- Department of Pharmacology , Chapel Hill School of Medicine , University of North Carolina , NC 27599 Chapel Hill , USA
| | - John D McCorvy
- Department of Pharmacology , Chapel Hill School of Medicine , University of North Carolina , NC 27599 Chapel Hill , USA
| | - Xiaoqing Cai
- The National Center for Drug Screening , The CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 201203 , Shanghai , China .
| | - Antao Dai
- The National Center for Drug Screening , The CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 201203 , Shanghai , China .
| | - Bryan L Roth
- Department of Pharmacology , Chapel Hill School of Medicine , University of North Carolina , NC 27599 Chapel Hill , USA
| | | | - Zhi-Jie Liu
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China . .,School of Life Science and Technology , ShanghaiTech University , 201202 , Shanghai , China
| | - Ming-Wei Wang
- The National Center for Drug Screening , The CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 201203 , Shanghai , China . .,School of Life Science and Technology , ShanghaiTech University , 201202 , Shanghai , China.,School of Pharmacy , Fudan University , 201203 , Shanghai , China
| | - Raymond C Stevens
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China . .,School of Life Science and Technology , ShanghaiTech University , 201202 , Shanghai , China
| | - Wenqing Shui
- iHuman Institute , ShanghaiTech University , 201210 , Shanghai , China . .,School of Life Science and Technology , ShanghaiTech University , 201202 , Shanghai , China
| |
Collapse
|
41
|
Lu S, Zhang J. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. J Med Chem 2018; 62:24-45. [DOI: 10.1021/acs.jmedchem.7b01844] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
42
|
Stoddart LA, Kilpatrick LE, Hill SJ. NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs. Trends Pharmacol Sci 2018; 39:136-147. [PMID: 29132917 DOI: 10.1016/j.tips.2017.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022]
Abstract
Recent advances in the development of fluorescent ligands for G-protein-coupled receptors (GPCRs) and receptor tyrosine kinase receptors (RTKs) have facilitated the study of these receptors in living cells. A limitation of these ligands is potential uptake into cells and increased nonspecific binding. However, this can largely be overcome by using proximity approaches, such as bioluminescence resonance energy transfer (BRET), which localise the signal (within 10nm) to the specific receptor target. The recent engineering of NanoLuc has resulted in a luciferase variant that is smaller and significantly brighter (up to tenfold) than existing variants. Here, we review the use of BRET from N-terminal NanoLuc-tagged GPCRs or a RTK to a receptor-bound fluorescent ligand to provide quantitative pharmacology of ligand-receptor interactions in living cells in real time.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; These authors contributed equally to this work
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; These authors contributed equally to this work
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
43
|
Stoddart LA, Vernall AJ, Bouzo-Lorenzo M, Bosma R, Kooistra AJ, de Graaf C, Vischer HF, Leurs R, Briddon SJ, Kellam B, Hill SJ. Development of novel fluorescent histamine H 1-receptor antagonists to study ligand-binding kinetics in living cells. Sci Rep 2018; 8:1572. [PMID: 29371669 PMCID: PMC5785503 DOI: 10.1038/s41598-018-19714-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023] Open
Abstract
The histamine H1-receptor (H1R) is an important mediator of allergy and inflammation. H1R antagonists have particular clinical utility in allergic rhinitis and urticaria. Here we have developed six novel fluorescent probes for this receptor that are very effective for high resolution confocal imaging, alongside bioluminescence resonance energy transfer approaches to monitor H1R ligand binding kinetics in living cells. The latter technology exploits the opportunities provided by the recently described bright bioluminescent protein NanoLuc when it is fused to the N-terminus of a receptor. Two different pharmacophores (mepyramine or the fragment VUF13816) were used to generate fluorescent H1R antagonists conjugated via peptide linkers to the fluorophore BODIPY630/650. Kinetic properties of the probes showed wide variation, with the VUF13816 analogues having much longer H1R residence times relative to their mepyramine-based counterparts. The kinetics of these fluorescent ligands could also be monitored in membrane preparations providing new opportunities for future drug discovery applications.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Andrea J Vernall
- School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Monica Bouzo-Lorenzo
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Reggie Bosma
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Albert J Kooistra
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Henry F Vischer
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Stephen J Briddon
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Barrie Kellam
- School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| | - Stephen J Hill
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
44
|
Deregulation of Frizzled Receptors in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19010313. [PMID: 29361730 PMCID: PMC5796257 DOI: 10.3390/ijms19010313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have a substantial role in tumorigenesis and are described as a “cancer driver”. Aberrant expression or activation of GPCRs leads to the deregulation of downstream signaling pathways, thereby promoting cancer progression. In hepatocellular carcinoma (HCC), the Wnt signaling pathway is frequently activated and it is associated with an aggressive HCC phenotype. Frizzled (FZD) receptors, a family member of GPCRs, are known to mediate Wnt signaling. Accumulating findings have revealed the deregulation of FZD receptors in HCC and their functional roles have been implicated in HCC progression. Given the important role of FZD receptors in HCC, we summarize here the expression pattern of FZD receptors in HCC and their corresponding functional roles during HCC progression. We also further review and highlight the potential targeting of FZD receptors as an alternative therapeutic strategy in HCC.
Collapse
|
45
|
Abstract
Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.
Collapse
Affiliation(s)
- Constantino Diaz
- Research Informatics, Evotec (France) SAS, 195 Route d'Espagne, 31036, Toulouse, France.
| | | | - Emilie Pihan
- Research Informatics, Evotec (France) SAS, 195 Route d'Espagne, 31036, Toulouse, France
| |
Collapse
|
46
|
Xu M, Hong R, Zhang X, Zou H, Zhang Y, Hou Z, Wang L. CysLT1 receptor antagonist alleviates pathogenesis of collagen-induced arthritis mouse model. Oncotarget 2017; 8:108418-108429. [PMID: 29312540 PMCID: PMC5752453 DOI: 10.18632/oncotarget.22664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) play a key role in inflammatory diseases such as asthma and their receptors’ antagonists are currently used as anti-asthmatic drugs. CysLTs have also been found to participate in other inflammatory reactions. Here, we reported that in rheumatoid arthritis (RA) animals model, collagen-induced arthritis, (CIA), CysLT1, a receptor for CysLTs, was up-regulated in hind paw and lymph node, while CysLTs levels in the blood were also higher than normal mice. Montelukast, a drug targeting CysLT1, has been shown to effectively reduce the CIA incidence, peak severity, and cumulative disease scores. Further study indicated that CysLT1 signaling did not affect the differentiation of pathogenic T helper cells. We conclude that montelukast may play important roles in the pathogenesis of CIA, mainly by inducing infiltration of pathogenic T cells, increasing IL-17A secretion and expression of IL-17A, while these effects can be blocked by CysLT1 antagonists. Our findings indicate that antagonist of CysLT1 receptor may be used to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Minwen Xu
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Ruiyun Hong
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xiaoli Zhang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Hailin Zou
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Yi Zhang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Zhiping Hou
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Liefeng Wang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| |
Collapse
|
47
|
Prosser RS, Ye L, Pandey A, Orazietti A. Activation processes in ligand-activated G protein-coupled receptors: A case study of the adenosine A 2A receptor. Bioessays 2017; 39. [PMID: 28787091 DOI: 10.1002/bies.201700072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we review concepts related to an ensemble description of G-protein-coupled receptors (GPCRs). The ensemble is characterized by both inactive and active states, whose equilibrium populations and exchange rates depend sensitively on ligand, environment, and allosteric factors. This review focuses on the adenosine A2 receptor (A2A R), a prototypical class A GPCR. 19 F Nuclear Magnetic Resonance (NMR) studies show that apo A2A R is characterized by a broad ensemble of conformers, spanning inactive to active states, and resembling states defined earlier for rhodopsin. In keeping with ideas associated with a conformational selection mechanism, addition of agonist serves to allosterically restrict the overall degrees of freedom at the G protein binding interface and bias both states and functional dynamics to facilitate G protein binding and subsequent activation. While the ligand does not necessarily "induce" activation, it does bias sampling of states, increase the cooperativity of the activation process and thus, the lifetimes of functional activation intermediates, while restricting conformational dynamics to that needed for activation.
Collapse
Affiliation(s)
- R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Libin Ye
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON, Canada
| | - Aditya Pandey
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON, Canada
| | | |
Collapse
|
48
|
Lee Y, Basith S, Choi S. Recent Advances in Structure-Based Drug Design Targeting Class A G Protein-Coupled Receptors Utilizing Crystal Structures and Computational Simulations. J Med Chem 2017; 61:1-46. [PMID: 28657745 DOI: 10.1021/acs.jmedchem.6b01453] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) represent the largest and most physiologically important integral membrane protein family, and these receptors respond to a wide variety of physiological and environmental stimuli. GPCRs are among the most critical therapeutic targets for numerous human diseases, and approximately one-third of the currently marketed drugs target this receptor family. The recent breakthroughs in GPCR structural biology have significantly contributed to our understanding of GPCR function, ligand binding, and pharmacological action as well as to the design of new drugs. This perspective highlights the latest advances in GPCR structures with a focus on the receptor-ligand interactions of each receptor family in class A nonrhodopsin GPCRs as well as the structural features for their activation, biased signaling, and allosteric mechanisms. The current state-of-the-art methodologies of structure-based drug design (SBDD) approaches in the GPCR research field are also discussed.
Collapse
Affiliation(s)
- Yoonji Lee
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Shaherin Basith
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul 03760, Republic of Korea
| |
Collapse
|
49
|
Ranjan R, Dwivedi H, Baidya M, Kumar M, Shukla AK. Novel Structural Insights into GPCR-β-Arrestin Interaction and Signaling. Trends Cell Biol 2017; 27:851-862. [PMID: 28651823 DOI: 10.1016/j.tcb.2017.05.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are major signal recognition and transmission units in the plasma membrane. The interaction of activated and phosphorylated GPCRs with the multifunctional adaptor proteins β-arrestins (βarrs) is crucial for regulation of their signaling and functional outcomes. Over the past few years, a range of structural, biochemical, and cellular studies have revealed novel insights into GPCR-βarr interaction and signaling. Some of these findings have come as a surprise and therefore have the potential to significantly refine the conceptual framework of the GPCR-βarr system. Here we discuss these recent advances with particular emphasis on biphasic GPCR-βarr interaction, the formation of GPCR-G-protein-βarr supercomplexes, and receptor-specific conformational signatures in βarrs. We also underline the emerging research areas that are likely to be at the center stage of investigations in the coming years.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Hemlata Dwivedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mohit Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
50
|
Zemella A, Grossmann S, Sachse R, Sonnabend A, Schaefer M, Kubick S. Qualifying a eukaryotic cell-free system for fluorescence based GPCR analyses. Sci Rep 2017. [PMID: 28623260 PMCID: PMC5473880 DOI: 10.1038/s41598-017-03955-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Membrane proteins are key elements in cell-mediated processes. In particular, G protein-coupled receptors (GPCRs) have attracted increasing interest since they affect cellular signaling. Furthermore, mutations in GPCRs can cause acquired and inheritable diseases. Up to date, there still exist a number of GPCRs that has not been structurally and functionally analyzed due to difficulties in cell-based membrane protein production. A promising approach for membrane protein synthesis and analysis has emerged during the last years and is known as cell-free protein synthesis (CFPS). Here, we describe a simply portable method to synthesize GPCRs and analyze their ligand-binding properties without the requirement of additional supplements such as liposomes or nanodiscs. This method is based on eukaryotic cell lysates containing translocationally active endogenous endoplasmic reticulum-derived microsomes where the insertion of GPCRs into biologically active membranes is supported. In this study we present CFPS in combination with fast fluorescence-based screening methods to determine the localization, orientation and ligand-binding properties of the endothelin B (ET-B) receptor upon expression in an insect-based cell-free system. To determine the functionality of the cell-free synthesized ET-B receptor, we analyzed the binding of its ligand endothelin-1 (ET-1) in a qualitative fluorescence-based assay and in a quantitative radioligand binding assay.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Solveig Grossmann
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Rita Sachse
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|