1
|
Wang J, Miao J, Zhu P. Insights into the complexities of Citrullination: From immune regulation to autoimmune disease. Autoimmun Rev 2024; 24:103734. [PMID: 39719187 DOI: 10.1016/j.autrev.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Citrullination, a post-translational modification that changes arginine to citrulline in proteins, is vital for immune response modulation and cell signaling. Catalyzed by peptidyl arginine deiminases (PADs), citrullination is linked to various diseases, particularly autoimmune disorders like rheumatoid arthritis (RA). Citrullinated proteins can trigger the production of anti-citrullinated protein antibodies (ACPAs), included in RA classification criteria. The immune response to citrullination involves both innate and adaptive immunity, affecting monocytes/macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. Citrullination contributes to disease development in RA and other conditions such as multiple sclerosis, sepsis, and cancer. Therapeutic strategies targeting citrullination and its effects are being explored, including B cell depletion therapies, T cell-directed approaches, PAD inhibitors, and citrullinated peptide-based vaccines. Understanding the interplay between citrullination and the immune system may lead to novel diagnostic tools and targeted therapies for autoimmune diseases and beyond.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Luchicchi A, Muñoz‐Gonzalez G, Halperin ST, Strijbis E, van Dijk LHM, Foutiadou C, Uriac F, Bouman PM, Schouten MAN, Plemel J, 't Hart BA, Geurts JJG, Schenk GJ. Micro-diffusely abnormal white matter: An early multiple sclerosis lesion phase with intensified myelin blistering. Ann Clin Transl Neurol 2024; 11:973-988. [PMID: 38425098 PMCID: PMC11021636 DOI: 10.1002/acn3.52015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic central nervous system disease whose white matter lesion origin remains debated. Recently, we reported subtle changes in the MS normal appearing white matter (NAWM), presenting with an increase in myelin blisters and myelin protein citrullination, which may recapitulate some of the prodromal degenerative processes involved in MS pathogenesis. Here, to clarify the relevance of these changes for subsequent MS myelin degeneration we explored their prevalence in WM regions characterized by subtly reduced myelination (dubbed as micro-diffusely abnormal white matter, mDAWM). METHODS We used an in-depth (immuno)histochemistry approach in 27 MS donors with histological presence of mDAWM and 5 controls. An antibody panel against degenerative markers was combined and the presence of myelin/axonal aberrations was analyzed and compared with the NAWM from the same cases/slices/regions. RESULTS mDAWM-defined areas exhibit ill-defined borders, no signs of Wallerian degeneration, and they associate with visible veins. Remarkably, such areas present with augmented myelin blister frequency, enhanced prevalence of polar myelin phospholipids, citrullination, and degradation of myelin basic protein (MBP) when compared with the NAWM. Furthermore, enhanced reactivity of microglia/macrophages against citrullinated MBP was also observed in this tissue. INTERPRETATION We report a new histologically defined early phase in MS lesion formation, namely mDAWM, which lacks signs of Wallerian pathology. These results support the prelesional nature of the mDAWM. We conceptualize that evolution to pathologically evident lesions comprises the previously documented imbalance of axo-myelinic units (myelin blistering) leading to their degeneration and immune system activation by released myelin components.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Gema Muñoz‐Gonzalez
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Saar T. Halperin
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Eva Strijbis
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
- Department of NeurologyAmsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Laura H. M. van Dijk
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Chrisa Foutiadou
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Florence Uriac
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Piet M. Bouman
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Maxime A. N. Schouten
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Jason Plemel
- Department of NeuroscienceUniversity of AlbertaEdmontonAlbertaCanada
| | - Bert A. 't Hart
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Jeroen J. G. Geurts
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| | - Geert J. Schenk
- Department of Anatomy and NeurosciencesAmsterdam University Medical Centers, location VU Medical Center, Amsterdam NeuroscienceAmsterdamthe Netherlands
- MS Centrum Amsterdam, Amsterdam University Medical Centers, location VU Medical CenterAmsterdamthe Netherlands
| |
Collapse
|
3
|
‘t Hart BA, van Luijn MM. EBV infection drives MS pathology: No. Mult Scler 2024; 30:485-487. [PMID: 38602258 PMCID: PMC11010563 DOI: 10.1177/13524585241235833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Bert A ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, VUMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Ria F, Delogu G, Ingrosso L, Sali M, Di Sante G. Secrets and lies of host-microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cell Mol Life Sci 2024; 81:40. [PMID: 38216734 PMCID: PMC11071949 DOI: 10.1007/s00018-023-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024]
Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.
Collapse
Affiliation(s)
- F Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - G Delogu
- Mater Olbia Hospital, 07026, Olbia, Italy
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
| | - L Ingrosso
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M Sali
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - G Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132, Perugia, Italy.
| |
Collapse
|
5
|
Qi L, Li X, Zhang F, Zhu X, Zhao Q, Yang D, Hao S, Li T, Li X, Tian T, Feng J, Sun X, Wang X, Gao S, Wang H, Ye J, Cao S, He Y, Wang H, Wei B. VEGFR-3 signaling restrains the neuron-macrophage crosstalk during neurotropic viral infection. Cell Rep 2023; 42:112489. [PMID: 37167063 DOI: 10.1016/j.celrep.2023.112489] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Upon recognizing danger signals produced by virally infected neurons, macrophages in the central nervous system (CNS) secrete multiple inflammatory cytokines to accelerate neuron apoptosis. The understanding is limited about which key effectors regulate macrophage-neuron crosstalk upon infection. We have used neurotropic-virus-infected murine models to identify that vascular endothelial growth factor receptor 3 (VEGFR-3) is upregulated in the CNS macrophages and that virally infected neurons secrete the ligand VEGF-C. When cultured with VEGF-C-containing supernatants from virally infected neurons, VEGFR-3+ macrophages suppress tumor necrosis factor α (TNF-α) secretion to reduce neuron apoptosis. Vegfr-3ΔLBD/ΔLBD (deletion of ligand-binding domain in myeloid cells) mice or mice treated with the VEGFR-3 kinase inhibitor exacerbate the severity of encephalitis, TNF-α production, and neuron apoptosis post Japanese encephalitis virus (JEV) infection. Activating VEGFR-3 or blocking TNF-α can reduce encephalitis and neuronal damage upon JEV infection. Altogether, we show that the inducible VEGF-C/VEGFR-3 module generates protective crosstalk between neurons and macrophages to alleviate CNS viral infection.
Collapse
Affiliation(s)
- Linlin Qi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaojing Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fang Zhang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xingguo Zhu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Zhao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Shujie Hao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Tong Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangyue Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Taikun Tian
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jian Feng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaochen Sun
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xilin Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shangyan Gao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulong He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou 215123, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bin Wei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350000, China.
| |
Collapse
|
6
|
Keller CW, Adamopoulos IE, Lünemann JD. Autophagy pathways in autoimmune diseases. J Autoimmun 2023; 136:103030. [PMID: 37001435 PMCID: PMC10709713 DOI: 10.1016/j.jaut.2023.103030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Autophagy comprises a growing range of cellular pathways, which occupy central roles in response to energy deprivation, organelle turnover and proteostasis. Over the years, autophagy has been increasingly linked to governing several aspects of immunity, including host defence against various pathogens, unconventional secretion of cytokines and antigen presentation. While canonical autophagy-mediated antigen processing in thymic epithelial cells supports the generation of a self-tolerant CD4+ T cell repertoire, mounting evidence suggests that deregulated autophagy pathways contribute to or sustain autoimmune responses. In animal models of multiple sclerosis (MS), non-canonical autophagy pathways such as microtubule-associated protein 1 A/1 B-light chain 3 (LC3)-associated phagocytosis can contribute to major histocompatibility complex (MHC) class II presentation of autoantigen, thereby amplifying autoreactive CD4+ T cell responses. In systemic lupus erythematosus (SLE), increased type 1 interferon production is linked to excessive autophagy in plasmacytoid dendritic cells (DCs). In rheumatoid arthritis (RA), autophagy proteins contribute to pathological citrullination of autoantigen. Immunotherapies effective in autoimmune diseases modulate autophagy functions, and strategies harnessing autophagy pathways to restrain autoimmune responses have been developed. This review illustrates recent insights in how autophagy, distinct autophagy pathways and autophagy protein functions intersect with the evolution and progression of autoimmune diseases, focusing on MS, SLE and RA.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, 48149, Germany
| | - Iannis E Adamopoulos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, 48149, Germany.
| |
Collapse
|
7
|
Tredicine M, Ria F, Poerio N, Lucchini M, Bianco A, De Santis F, Valentini M, De Arcangelis V, Rende M, Stabile AM, Pistilli A, Camponeschi C, Nociti V, Mirabella M, Fraziano M, Di Sante G. Liposome-based nanoparticles impact on regulatory and effector phenotypes of macrophages and T cells in multiple Sclerosis patients. Biomaterials 2023; 292:121930. [PMID: 36493716 DOI: 10.1016/j.biomaterials.2022.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Current available treatments of Multiple Sclerosis (MS) reduce neuroinflammation acting on different targets on the immune system, but potentially lead to severe side effects and have a limited efficacy in slowing the progression of the disease. Here, we evaluated in vitro the immunomodulatory potential of a new class of nanoparticles - liposomes, constituted by a double-layer of phosphatidylserine (PSCho/PS), and double-faced, with an outer layer of phosphatidylserine and an inner layer of phosphatidic acid (PSCho/PA), either alone or in the presence of the myelin basic protein (MBP) peptide (residues 85-99) (PSCho/PS-MBP and PSCho/PA-MBP). Results showed that PSCho/PS are equally and efficiently internalized by pro- and anti-inflammatory macrophages (M1 and M2 respectively), while PSCho/PA were internalized better by M2 than M1. PSCho/PS liposomes were able to inhibit the secretion of innate pro-inflammatory cytokine IL-1β. PSCho/PS liposomes expanded Tregs, reducing Th1 and Th17 cells, while PSCho/PA liposomes were unable to dampen pro-inflammatory T cells and to promote immune-regulatory phenotype (Treg). The ability of PSCho/PS liposomes to up-regulate Treg cells was more pronounced in MS patients with high basal expression of M2 markers. PSCho/PS liposomes were more effective in decreasing Th1 (but not Th17) cells in MS patients with a disease duration >3 months. On the other hand, down-modulation of Th17 cells was evident in MS patients with active, Gadolinium enhancing lesions at MRI and in MS patients with a high basal expression of M1-associated markers in the monocytes. The same findings were observed for the modulation of MBP-driven Th1/Th17/Treg responses. These observations suggest that early MS associate to a hard-wired pro-Th1 phenotype of M1 that is lost later during disease course. On the other hand, acute inflammatory events reflect a temporary decrease of M2 phenotype that however is amenable to restauration upon treatment with PSCho/PS liposomes. Thus, together these data indicate that monocytes/macrophages may play an important regulatory function during MS course and suggest a role for PSCho/PS and PSCho/PS-MBP as new therapeutic tools to dampen the pro-inflammatory immune responses and to promote its regulatory branch.
Collapse
Affiliation(s)
- Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Department Laboratory and Infectious diseases Sciences, Largo Agostino Gemelli 1-8, 00168, Rome, Italy.
| | - Noemi Poerio
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Matteo Lucchini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Assunta Bianco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Federica De Santis
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Mariagrazia Valentini
- Section of Pathology, Department of Woman, Child and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168, Rome, Italy.
| | - Valeria De Arcangelis
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Mario Rende
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Anna Maria Stabile
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Alessandra Pistilli
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Chiara Camponeschi
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Viviana Nociti
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Maurizio Fraziano
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Gabriele Di Sante
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| |
Collapse
|
8
|
Goyal NA, Coulis G, Duarte J, Farahat PK, Mannaa AH, Cauchii J, Irani T, Araujo N, Wang L, Wencel M, Li V, Zhang L, Greenberg SA, Mozaffar T, Villalta SA. Immunophenotyping of Inclusion Body Myositis Blood T and NK Cells. Neurology 2022; 98:e1374-e1383. [PMID: 35131904 PMCID: PMC8967422 DOI: 10.1212/wnl.0000000000200013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate the therapeutic potential of targeting highly differentiated T cells in patients with inclusion body myositis (IBM) by establishing high-resolution mapping of killer cell lectin-like receptor subfamily G member 1 (KLRG1+) within the T and natural killer (NK) cell compartments. METHODS Blood was collected from 51 patients with IBM and 19 healthy age-matched donors. Peripheral blood mononuclear cells were interrogated by flow cytometry using a 12-marker antibody panel. The panel allowed the delineation of naive T cells (Tn), central memory T cells (Tcm), 4 stages of effector memory differentiation T cells (Tem 1-4), and effector memory re-expressing CD45RA T cells (TemRA), as well as total and subpopulations of NK cells based on the differential expression of CD16 and C56. RESULTS We found that a population of KLRG1+ Tem and TemRA were expanded in both the CD4+ and CD8+ T-cell subpopulations in patients with IBM. KLRG1 expression in CD8+ T cells increased with T-cell differentiation with the lowest levels of expression in Tn and highest in highly differentiated TemRA and CD56+CD8+ T cells. The frequency of KLRG1+ total NK cells and subpopulations did not differ between patients with IBM and healthy donors. IBM disease duration correlated with increased CD8+ T-cell differentiation. DISCUSSION Our findings reveal that the selective expansion of blood KLRG1+ T cells in patients with IBM is confined to the TemRA and Tem cellular compartments.
Collapse
Affiliation(s)
- Namita A Goyal
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Gérald Coulis
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Jorge Duarte
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Philip K Farahat
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Ali H Mannaa
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Jonathan Cauchii
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Tyler Irani
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Nadia Araujo
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Leo Wang
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Marie Wencel
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Vivian Li
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Lishi Zhang
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Steven A Greenberg
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Tahseen Mozaffar
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - S Armando Villalta
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA.
| |
Collapse
|
9
|
't Hart BA, Luchicchi A, Schenk GJ, Stys PK, Geurts JJG. Mechanistic underpinning of an inside-out concept for autoimmunity in multiple sclerosis. Ann Clin Transl Neurol 2021; 8:1709-1719. [PMID: 34156169 PMCID: PMC8351380 DOI: 10.1002/acn3.51401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
The neuroinflammatory disease multiple sclerosis is driven by autoimmune pathology in the central nervous system. However, the trigger of the autoimmune pathogenic process is unknown. MS models in immunologically naïve, specific‐pathogen‐free bred rodents support an exogenous trigger, such as an infection. The validity of this outside–in pathogenic concept for MS has been frequently challenged by the difficulty to translate pathogenic concepts developed in these models into effective therapies for the MS patient. Studies in well‐validated non‐human primate multiple sclerosis models where, just like in humans, the autoimmune pathogenic process develops from an experienced immune system trained by prior infections, rather support an endogenous trigger. Data reviewed here corroborate the validity of this inside–out pathogenic concept for multiple sclerosis. They also provide a plausible sequence of events reminiscent of Wilkin’s primary lesion theory: (i) that autoimmunity is a physiological response of the immune system against excess antigen turnover in diseased tissue (the primary lesion) and (ii) that individuals developing autoimmune disease are (genetically predisposed) high responders against critical antigens. Data obtained in multiple sclerosis brains reveal the presence in normally appearing white matter of myelinated axons where myelin sheaths have locally dissociated from their enwrapped axon (i.e., blistering). The ensuing disintegration of axon–myelin units potentially causes the excess systemic release of post‐translationally modified myelin. Data obtained in a unique primate multiple sclerosis model revealed a core pathogenic role of T cells present in the normal repertoire, which hyper‐react to post‐translationally modified (citrullinated) myelin–oligodendrocyte glycoprotein and evoke clinical and pathological aspects of multiple sclerosis.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Antonio Luchicchi
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Geert J Schenk
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Jeroen J G Geurts
- Department Anatomy and Neuroscience, University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Multiple sclerosis and drug discovery: A work of translation. EBioMedicine 2021; 68:103392. [PMID: 34044219 PMCID: PMC8245896 DOI: 10.1016/j.ebiom.2021.103392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is after trauma the most important neurological disease in young adults, affecting 1 per 1000 individuals. With currently available medications, most of these targeting the immune system, satisfactory results have been obtained in patients with relapsing MS, but these can have serious adverse effects. Moreover, despite some promising developments, such as with B cell targeting therapies or sphingosine-1-phosphate modulating drugs, there still is a high unmet need of safe drugs with broad efficacy in patients with progressive MS. Despite substantial investments and intensive preclinical research, the proportion of promising lead compounds that reaches the approved drug status remains disappointingly low. One cause lies in the poor predictive validity of MS animal models used in the translation of pathogenic mechanisms into safe and effective treatments for the patient. This disturbing situation has raised criticism against the relevance of animal models used in preclinical research and calls for improvement of these models. This publication presents a potentially useful strategy to enhance the predictive validity of MS animal models, namely, to analyze the causes of failure in forward translation (lab to clinic) via reverse translation (clinic to lab). Through this strategy new insights can be gained that can help generate more valid MS models.
Collapse
|
11
|
Bhagavati S. Autoimmune Disorders of the Nervous System: Pathophysiology, Clinical Features, and Therapy. Front Neurol 2021; 12:664664. [PMID: 33935958 PMCID: PMC8079742 DOI: 10.3389/fneur.2021.664664] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Remarkable discoveries over the last two decades have elucidated the autoimmune basis of several, previously poorly understood, neurological disorders. Autoimmune disorders of the nervous system may affect any part of the nervous system, including the brain and spinal cord (central nervous system, CNS) and also the peripheral nerves, neuromuscular junction and skeletal muscle (peripheral nervous system, PNS). This comprehensive overview of this rapidly evolving field presents the factors which may trigger breakdown of self-tolerance and development of autoimmune disease in some individuals. Then the pathophysiological basis and clinical features of autoimmune diseases of the nervous system are outlined, with an emphasis on the features which are important to recognize for accurate clinical diagnosis. Finally the latest therapies for autoimmune CNS and PNS disorders and their mechanisms of action and the most promising research avenues for targeted immunotherapy are discussed.
Collapse
Affiliation(s)
- Satyakam Bhagavati
- Department of Neurology, Downstate Medical Center, State University of New York College of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Luchicchi A, Hart B, Frigerio I, van Dam AM, Perna L, Offerhaus HL, Stys PK, Schenk GJ, Geurts JJG. Axon-Myelin Unit Blistering as Early Event in MS Normal Appearing White Matter. Ann Neurol 2021; 89:711-725. [PMID: 33410190 PMCID: PMC8048993 DOI: 10.1002/ana.26014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 02/04/2023]
Abstract
Objective Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of unknown etiology. Although the prevalent view regards a CD4+‐lymphocyte autoimmune reaction against myelin at the root of the disease, recent studies propose autoimmunity as a secondary reaction to idiopathic brain damage. To gain knowledge about this possibility we investigated the presence of axonal and myelinic morphological alterations, which could implicate imbalance of axon‐myelin units as primary event in MS pathogenesis. Methods Using high resolution imaging histological brain specimens from patients with MS and non‐neurological/non‐MS controls, we explored molecular changes underpinning imbalanced interaction between axon and myelin in normal appearing white matter (NAWM), a region characterized by normal myelination and absent inflammatory activity. Results In MS brains, we detected blister‐like swellings formed by myelin detachment from axons, which were substantially less frequently retrieved in non‐neurological/non‐MS controls. Swellings in MS NAWM presented altered glutamate receptor expression, myelin associated glycoprotein (MAG) distribution, and lipid biochemical composition of myelin sheaths. Changes in tethering protein expression, widening of nodes of Ranvier and altered distribution of sodium channels in nodal regions of otherwise normally myelinated axons were also present in MS NAWM. Finally, we demonstrate a significant increase, compared with controls, in citrullinated proteins in myelin of MS cases, pointing toward biochemical modifications that may amplify the immunogenicity of MS myelin. Interpretation Collectively, the impaired interaction of myelin and axons potentially leads to myelin disintegration. Conceptually, the ensuing release of (post‐translationally modified) myelin antigens may elicit a subsequent immune attack in MS. ANN NEUROL 2021;89:711–725
Collapse
Affiliation(s)
- Antonio Luchicchi
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Bert't Hart
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Frigerio
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Laura Perna
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Herman L Offerhaus
- Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Peter K Stys
- Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Geert J Schenk
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Misrielal C, Mauthe M, Reggiori F, Eggen BJL. Autophagy in Multiple Sclerosis: Two Sides of the Same Coin. Front Cell Neurosci 2020; 14:603710. [PMID: 33328897 PMCID: PMC7714924 DOI: 10.3389/fncel.2020.603710] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex auto-immune disorder of the central nervous system (CNS) that involves a range of CNS and immune cells. MS is characterized by chronic neuroinflammation, demyelination, and neuronal loss, but the molecular causes of this disease remain poorly understood. One cellular process that could provide insight into MS pathophysiology and also be a possible therapeutic avenue, is autophagy. Autophagy is an intracellular degradative pathway essential to maintain cellular homeostasis, particularly in neurons as defects in autophagy lead to neurodegeneration. One of the functions of autophagy is to maintain cellular homeostasis by eliminating defective or superfluous proteins, complexes, and organelles, preventing the accumulation of potentially cytotoxic damage. Importantly, there is also an intimate and intricate interplay between autophagy and multiple aspects of both innate and adaptive immunity. Thus, autophagy is implicated in two of the main hallmarks of MS, neurodegeneration, and inflammation, making it especially important to understand how this pathway contributes to MS manifestation and progression. This review summarizes the current knowledge about autophagy in MS, in particular how it contributes to our understanding of MS pathology and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chairi Misrielal
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mario Mauthe
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fulvio Reggiori
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J L Eggen
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Brandão WN, De Oliveira MG, Andreoni RT, Nakaya H, Farias AS, Peron JPS. Neuroinflammation at single cell level: What is new? J Leukoc Biol 2020; 108:1129-1137. [PMID: 32779279 DOI: 10.1002/jlb.3mr0620-035r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis is a chronic and demyelinating disease of the central nervous system (CNS), most prevalent in women, and with an important social and economic cost worldwide. It is triggered by self-reacting lymphocytes that infiltrate the CNS and initiate neuroinflammation. Further, axonal loss and neuronal death takes place, leading to neurodegeneration and brain atrophy. The murine model for studying MS, experimental autoimmune encephalomyelitis (EAE), consists in immunizing mice with myelin-derived epitopes. APCs activate encephalitogenic T CD4 and CD8 lymphocytes that migrate mainly to the spinal cord resulting in neuroinflammation. Most of the knowledge on the pathophysiology and treatment of MS was obtained from EAE experiments, as Th17 cells, anti-alpha4 blocking Abs and the role of microbiota. Conversely, recent technology breakthroughs, such as CyTOF and single-cell RNA-seq, promise to revolutionize our understanding on the mechanisms involved both in MS and EAE. In fact, the importance of specific cellular populations and key molecules in MS/EAE is a constant matter of debate. It is well accepted that both Th1 and Th17 T CD4 lymphocytes play a relevant role in disease initiation after re-activation in situ. What is still under constant investigation, however, is the plasticity of the lymphocyte population, and the individual contribution of both resident and inflammatory cells for the progression or recovery of the disease. Thus, in this review, new findings obtained after single-cell analysis of blood and central nervous system infiltrating cells from MS/EAE and how they have contributed to a better knowledge on the cellular and molecular mechanisms of neuroinflammation are discussed.
Collapse
Affiliation(s)
- W N Brandão
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - M G De Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - R T Andreoni
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - H Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - A S Farias
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology - Institute of Biology, University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), Division of Immune-Mediated Diseases
| | - J P S Peron
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil.,Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil.,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
15
|
't Hart BA. A Tolerogenic Role of Cathepsin G in a Primate Model of Multiple Sclerosis: Abrogation by Epstein-Barr Virus Infection. Arch Immunol Ther Exp (Warsz) 2020; 68:21. [PMID: 32556812 PMCID: PMC7299916 DOI: 10.1007/s00005-020-00587-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
Using a non-human primate model of the autoimmune neuroinflammatory disease multiple sclerosis (MS), we have unraveled the role of B cells in the making and breaking of immune tolerance against central nervous system myelin. It is discussed here that B cells prevent the activation of strongly pathogenic T cells present in the naïve repertoire, which are directed against the immunodominant myelin antigen MOG (myelin oligodendrocyte glycoprotein). Prevention occurs via destructive processing of a critical epitope (MOG34-56) through the lysosomal serine protease cathepsin G. This effective tolerance mechanism is abrogated when the B cells are infected with Epstein–Barr virus, a ubiquitous γ1-herpesvirus that entails the strongest non-genetic risk factor for MS.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center, Groningen, The Netherlands. .,Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Tarlinton RE, Martynova E, Rizvanov AA, Khaiboullina S, Verma S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses 2020; 12:E643. [PMID: 32545816 PMCID: PMC7354629 DOI: 10.3390/v12060643] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease, where the underlying etiological cause remains elusive. Multiple triggering factors have been suggested, including environmental, genetic and gender components. However, underlying infectious triggers to the disease are also suspected. There is an increasing abundance of evidence supporting a viral etiology to MS, including the efficacy of interferon therapy and over-detection of viral antibodies and nucleic acids when compared with healthy patients. Several viruses have been proposed as potential triggering agents, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, John Cunningham virus and human endogenous retroviruses. These viruses are all near ubiquitous and have a high prevalence in adult populations (or in the case of the retroviruses are actually part of the genome). They can establish lifelong infections with periods of reactivation, which may be linked to the relapsing nature of MS. In this review, the evidence for a role for viral infection in MS will be discussed with an emphasis on immune system activation related to MS disease pathogenesis.
Collapse
Affiliation(s)
- Rachael E. Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Ekaterina Martynova
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | - Albert A. Rizvanov
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | | | - Subhash Verma
- School of Medicine, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
17
|
Investigation of the miRNA146a and miRNA155 gene expression levels in patients with multiple sclerosis. J Clin Neurosci 2020; 78:189-193. [PMID: 32331943 DOI: 10.1016/j.jocn.2020.04.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease and the most common neurodegenerative status. MicroRNAs play an important role in macrophage response to inflammatory processes, and alterations in miRNA levels trigger the inactivation of specific T lymphocytes. As a result, these factors can lead to autoimmune diseases such as MS. Therefore, to determine the role of MicroRNA-146a and MicroRNA-155 in MS patients, their expression levels in serum of MS patients were compared with healthy controls. In this study, the expression levels of MicroRNA-146a and MicroRNA-155 in 30 serum samples of MS and healthy patients as a control group. MicroRNA extraction and cDNA synthesis was performed according manufacture protocols. The expression levels of MicroRNAs were evaluated by Real Time-PCR. MicroRNA-146a and MicroRNA-155 levels were increased in patients with MS compared to controls. The results demonstrated that EDSS score are increased with increasing level of MicroRNA-146a and MicroRNA-155. ROC curve analysis showed that the area under curve (AUC) was significant for MicroRNA-146a and MicroRNA-155. Increased expression levels of MicroRNA-146a and MicroRNA-155 may be associated with the pathogenesis of MS disease. If this study is conducted in a larger sample population and the above results can be used to identify patients or control patients who are under medical care.
Collapse
|
18
|
Laman JD, 't Hart BA, Power C, Dziarski R. Bacterial Peptidoglycan as a Driver of Chronic Brain Inflammation. Trends Mol Med 2020; 26:670-682. [PMID: 32589935 DOI: 10.1016/j.molmed.2019.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
Peptidoglycan (PGN) is a cell wall component of both Gram-positive and Gram-negative bacteria. Signature fragments of PGN are proinflammatory through engagement of pattern recognition receptors (PRR) on resident tissue cells and circulating leukocytes. Despite its abundance in the gut microbiota, there is limited recognition that PGN could contribute to chronic neuroinflammation. This review highlights current insights into the roles of PGN as a determinant of brain inflammation, notably in multiple sclerosis (MS) and its experimental autoimmune encephalomyelitis (EAE) models. Recent studies demonstrate PGN in blood of healthy adult humans. PGN amplifies autoimmune pathology via activation of innate immune cells. Novel uptake routes through (altered) gut mucosa by myeloid leukocyte subsets promote PGN transport to the brain.
Collapse
Affiliation(s)
- Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Anatomy and Neuroscience, Free University Amsterdam, Amsterdam, The Netherlands
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN, USA
| |
Collapse
|
19
|
Animal Models for Gammaherpesvirus Infections: Recent Development in the Analysis of Virus-Induced Pathogenesis. Pathogens 2020; 9:pathogens9020116. [PMID: 32059472 PMCID: PMC7167833 DOI: 10.3390/pathogens9020116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV) is involved in the pathogenesis of various lymphomas and carcinomas, whereas Kaposi’s sarcoma-associated herpesvirus (KSHV) participates in the pathogenesis of endothelial sarcoma and lymphomas. EBV and KSHV are responsible for 120,000 and 44,000 annual new cases of cancer, respectively. Despite this clinical importance, no chemotherapies or vaccines have been developed for virus-specific treatment and prevention of these viruses. Humans are the only natural host for both EBV and KSHV, and only a limited species of laboratory animals are susceptible to their experimental infection; this strict host tropism has hampered the development of their animal models and thereby impeded the study of therapeutic and prophylactic strategies. To overcome this difficulty, three main approaches have been used to develop animal models for human gammaherpesvirus infections. The first is experimental infection of laboratory animals with EBV or KSHV. New-world non-human primates (NHPs) and rabbits have been mainly used in this approach. The second is experimental infection of laboratory animals with their own inherent gammaherpesviruses. NHPs and mice have been mainly used here. The third, a recent trend, employs experimental infection of EBV or KSHV or both to immunodeficient mice reconstituted with human immune system components (humanized mice). This review will discuss how these three approaches have been used to reproduce human clinical conditions associated with gammaherpesviruses and to analyze the mechanisms of their pathogenesis.
Collapse
|
20
|
Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, Croze E, Aftab BT, Giovannoni G, Joshi MA. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med 2019; 26:296-310. [PMID: 31862243 PMCID: PMC7106557 DOI: 10.1016/j.molmed.2019.11.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
New treatments for multiple sclerosis (MS) focused on B cells have created an atmosphere of excitement in the MS community. B cells are now known to play a major role in disease, demonstrated by the highly impactful effect of a B cell-depleting antibody on controlling MS. The idea that a virus may play a role in the development of MS has a long history and is supported mostly by studies demonstrating a link between B cell-tropic Epstein–Barr virus (EBV) and disease onset. Efforts to develop antiviral strategies for treating MS are underway. Although gaps remain in our understanding of the etiology of MS, the role, if any, of viruses in propagating pathogenic immune responses deserves attention.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Pender
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tap Maniar
- Clinical Development, Torque Therapeutics, Boston, MA, USA
| | - Ed Croze
- IRIS-Bay, San Francisco, CA, USA.
| | - Blake T Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University London, Barts and the London School of Medicine, London, UK
| | - Manher A Joshi
- Medical Affairs, Atara Biotherapeutics, South San Francisco, CA, USA
| |
Collapse
|
21
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
22
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Araman C, van Gent ME, Meeuwenoord NJ, Heijmans N, Marqvorsen MHS, Doelman W, Faber BW, 't Hart BA, Van Kasteren SI. Amyloid-like Behavior of Site-Specifically Citrullinated Myelin Oligodendrocyte Protein (MOG) Peptide Fragments inside EBV-Infected B-Cells Influences Their Cytotoxicity and Autoimmunogenicity. Biochemistry 2019; 58:763-775. [PMID: 30513201 PMCID: PMC6374747 DOI: 10.1021/acs.biochem.8b00852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Multiple
sclerosis (MS) is an autoimmune disorder manifested via
chronic inflammation, demyelination, and neurodegeneration inside
the central nervous system. The progressive phase of MS is characterized
by neurodegeneration, but unlike classical neurodegenerative diseases,
amyloid-like aggregation of self-proteins has not been documented.
There is evidence that citrullination protects an immunodominant peptide
of human myelin oligodendrocyte glycoprotein (MOG34–56) against destructive processing in Epstein-Barr virus-infected B-lymphocytes
(EBV-BLCs) in marmosets and causes exacerbation of ongoing MS-like
encephalopathies in mice. Here we collected evidence that citrullination
of MOG can also lead to amyloid-like behavior shifting the disease
pathogenesis toward neurodegeneration. We observed that an immunodominant
MOG peptide, MOG35–55, displays amyloid-like behavior
upon site-specific citrullination at positions 41, 46, and/or 52.
These amyloid aggregates are shown to be toxic to the EBV-BLCs and
to dendritic cells at concentrations favored for antigen presentation,
suggesting a role of amyloid-like aggregation in the pathogenesis
of progressive MS.
Collapse
Affiliation(s)
- Can Araman
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Miriam E van Gent
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Nico J Meeuwenoord
- Leiden Institute of Chemistry and Department of Bioorganic Synthesis , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Nicole Heijmans
- Department of Immunobiology , Biomedical Primate Research Centre , 2288 GJ Rijswijk , The Netherlands
| | - Mikkel H S Marqvorsen
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Ward Doelman
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Bart W Faber
- Department of Parasitology , Biomedical Primate Research Centre , 2288 GJ Rijswijk , The Netherlands
| | - Bert A 't Hart
- Department of Immunobiology , Biomedical Primate Research Centre , 2288 GJ Rijswijk , The Netherlands.,Department of Neuroscience , University of Groningen, University Medical Centre , 9700 AB Groningen , The Netherlands
| | - Sander I Van Kasteren
- Leiden Institute of Chemistry and Institute for Chemical Immunology , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| |
Collapse
|
24
|
Lv H, Ye L, Liu Q, Li SG, Li T, Huang NL, Gao Y, Fan LB, Du WD. S-S-PEG-COOH Self-Assembled Monolayer on Gold Surface Enabled a Combined Assay for Serological EBV Antibody Isotypes. Proteomics Clin Appl 2018; 13:e1800067. [PMID: 30311429 DOI: 10.1002/prca.201800067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/13/2018] [Indexed: 11/09/2022]
Abstract
PURPOSE Epstein-Barr virus (EBV) is a ubiquitous human gamma herpes virus that infects human epithelial cells and B lymphocytes. It would be potentially valuable to develop novel combined assays to benefit screening for large panels of samples of EBV infectious diseases. EXPERIMENTAL DESIGN A simple antigen-probed biochip that is modified with S-S-PEG-COOH and is used as a label-free high-throughput screening method for a combined detection of EBV capsid antigen IgM antibody, capsid antigen IgG antibody, and nuclear antigen IgG antibody. RESULTS This protein biochip has similar feasibility, sensitivity, and specificity in comparison with Liaison chemiluminescent immunoassay (CLIA). Detection limit of the EBV antibodies by the biochip is almost identical to that by CLIA-L (2.91 U mL-1 vs 3.00 U mL-1 for EBNA-1 IgG, 8 U mL-1 vs10 U mL-1 for EBV-VCA IgG, and 3.5 U mL-1 vs 10 U mL-1 for EBV-VCA IgM). Tests of the three serological antibodies against EBV by the biochip are consistent with the CLIA-L method in 274 clinical sera, respectively. Finally, the combined biochip is successfully utilized for diagnostic identification of EBV infection in 14 patients with infectious mononucleosis (IM) and 25 patients with systemic lupus erythematosus SLE, as well as additional 10 known real-time PCR positive patients. CONCLUSIONS AND CLINICAL RELEVANCE This biochip format will enable concurrent detection of antibodies against EBV infection and confirm infection status of EBV. It will be a versatile tool for large-scale epidemiological screening in view of its miniaturization and high throughput.
Collapse
Affiliation(s)
- Hui Lv
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lei Ye
- Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Qian Liu
- Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Song-Guo Li
- Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
| | - Na-Li Huang
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yi Gao
- Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Li-Bin Fan
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wei-Dong Du
- Department of Pathology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
25
|
Kap YS, Bus-Spoor C, van Driel N, Dubbelaar ML, Grit C, Kooistra SM, Fagrouch ZC, Verschoor EJ, Bauer J, Eggen BJL, Harmsen HJM, Laman JD, 't Hart BA. Targeted Diet Modification Reduces Multiple Sclerosis-like Disease in Adult Marmoset Monkeys from an Outbred Colony. THE JOURNAL OF IMMUNOLOGY 2018; 201:3229-3243. [PMID: 30341184 DOI: 10.4049/jimmunol.1800822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) in common marmosets is a translationally relevant model of the chronic neurologic disease multiple sclerosis. Following the introduction of a new dietary supplement in our purpose-bred marmoset colony, the percentage of marmosets in which clinically evident EAE could be induced by sensitization against recombinant human myelin oligodendrocyte glycoprotein in IFA decreased from 100 to 65%. The reduced EAE susceptibility after the dietary change coincided with reduced Callitrichine herpesvirus 3 expression in the colony, an EBV-related γ1-herpesvirus associated with EAE. We then investigated, in a controlled study in marmoset twins, which disease-relevant parameters were affected by the dietary change. The selected twins had been raised on the new diet for at least 12 mo prior to the study. In twin siblings reverted to the original diet 8 wk prior to EAE induction, 100% disease prevalence (eight out of eight) was restored, whereas in siblings remaining on the new diet the EAE prevalence was 75% (six out of eight). Spinal cord demyelination, a classical hallmark of the disease, was significantly lower in new-diet monkeys than in monkeys reverted to the original diet. In new-diet monkeys, the proinflammatory T cell response to recombinant human myelin oligodendrocyte glycoprotein was significantly reduced, and RNA-sequencing revealed reduced apoptosis and enhanced myelination in the brain. Systematic typing of the marmoset gut microbiota using 16S rRNA sequencing demonstrated a unique, Bifidobacteria-dominated composition, which changed after disease induction. In conclusion, targeted dietary intervention exerts positive effects on EAE-related parameters in multiple compartments of the marmoset's gut-immune-CNS axis.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands;
| | - Carien Bus-Spoor
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Nikki van Driel
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Marissa L Dubbelaar
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Corien Grit
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Susanne M Kooistra
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Zahra C Fagrouch
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Jan Bauer
- Department for Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bart J L Eggen
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Jon D Laman
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands.,Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| |
Collapse
|
26
|
Impaired intracellular pathogen clearance and inflammatory joint disease: Is Whipple's disease a guiding light? Joint Bone Spine 2018; 85:531-536. [PMID: 28965939 DOI: 10.1016/j.jbspin.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2017] [Indexed: 01/29/2023]
|
27
|
Phillips KA, Tukan AN, Rigodanzo AD, Reusch RT, Brasky KM, Meyer JS. Quantification of hair cortisol concentration in common marmosets (Callithrix jacchus) and tufted capuchins (Cebus apella). Am J Primatol 2018; 80:e22879. [PMID: 29862532 PMCID: PMC6481164 DOI: 10.1002/ajp.22879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
Quantifying cortisol concentration in hair is a non-invasive biomarker of long-term hypothalamic-pituitary-adrenal (HPA) activation, and thus can provide important information on laboratory animal health. Marmosets (Callithrix jacchus) and capuchins (Cebus apella) are New World primates increasingly used in biomedical and neuroscience research, yet published hair cortisol concentrations for these species are limited. Review of the existing published hair cortisol values from marmosets reveals highly discrepant values and the use of variable techniques for hair collection, processing, and cortisol extraction. In this investigation we utilized a well-established, standardized protocol to extract and quantify cortisol from marmoset (n = 12) and capuchin (n = 4) hair. Shaved hair samples were collected from the upper thigh during scheduled exams and analyzed via methanol extraction and enzyme immunoassay. In marmosets, hair cortisol concentration ranged from 2,710 to 6,267 pg/mg and averaged 4,070 ± 304 pg/mg. In capuchins, hair cortisol concentration ranged from 621 to 2,089 pg/mg and averaged 1,092 ± 338 pg/mg. Hair cortisol concentration was significantly different between marmosets and capuchins, with marmosets having higher concentrations than capuchins. The incorporation of hair cortisol analysis into research protocols provides a non-invasive measure of HPA axis activity over time, which offers insight into animal health. Utilization of standard protocols across laboratories is essential to obtaining valid measurements and allowing for valuable future cross-species comparisons.
Collapse
Affiliation(s)
- Kimberley A. Phillips
- Department of Psychology, Trinity University, San Antonio Texas 78212
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio Texas 78227
| | - Alyson N. Tukan
- Department of Psychology, Trinity University, San Antonio Texas 78212
| | - Anna D. Rigodanzo
- Department of Psychology, Trinity University, San Antonio Texas 78212
| | - Ryan T. Reusch
- Department of Psychology, Trinity University, San Antonio Texas 78212
| | - Kathleen M. Brasky
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio Texas 78227
| | - Jerrold S. Meyer
- Department of Psychological and Brain Sciences, University of Massachusetts – Amherst, Amherst, Massachusetts
| |
Collapse
|
28
|
Berthelot JM, Puéchal X. Défauts d’élimination intracellulaire d’agents infectieux et rhumatismes inflammatoires : la maladie de Whipple comme fil d’Ariane ? REVUE DU RHUMATISME 2018; 85:237-242. [DOI: 10.1016/j.rhum.2017.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
't Hart BA, Weissert R. We should focus more on finding therapeutic targets for the non-inflammatory damage in MS - No. Mult Scler 2018; 24:1274-1276. [PMID: 29656691 DOI: 10.1177/1352458518761571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands/Department of Neuroscience, University Medical Centre, University of Groningen, Groningen, The Netherlands
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
30
|
't Hart BA, Laman JD, Kap YS. Merits and complexities of modeling multiple sclerosis in non-human primates: implications for drug discovery. Expert Opin Drug Discov 2018; 13:387-397. [PMID: 29465302 DOI: 10.1080/17460441.2018.1443075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The translation of scientific discoveries made in animal models into effective treatments for patients often fails, indicating that currently used disease models in preclinical research are insufficiently predictive for clinical success. An often-used model in the preclinical research of autoimmune neurological diseases, multiple sclerosis in particular, is experimental autoimmune encephalomyelitis (EAE). Most EAE models are based on genetically susceptible inbred/SPF mouse strains used at adolescent age (10-12 weeks), which lack exposure to genetic and microbial factors which shape the human immune system. Areas covered: Herein, the authors ask whether an EAE model in adult non-human primates from an outbred conventionally-housed colony could help bridge the translational gap between rodent EAE models and MS patients. Particularly, the authors discuss a novel and translationally relevant EAE model in common marmosets (Callithrix jacchus) that shares remarkable pathological similarity with MS. Expert opinion: The MS-like pathology in this model is caused by the interaction of effector memory T cells with B cells infected with the γ1-herpesvirus (CalHV3), both present in the pathogen-educated marmoset immune repertoire. The authors postulate that depletion of only the small subset (<0.05%) of CalHV3-infected B cells may be sufficient to limit chronic inflammatory demyelination.
Collapse
Affiliation(s)
- Bert A 't Hart
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands.,b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jon D Laman
- b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Yolanda S Kap
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| |
Collapse
|
31
|
Bosseler L, Bakker J, Duchateau L, Remarque E, Langermans JAM, Cornillie P, Chiers K. 25-OH-vitamin D, parathyroid hormone, and calcium serum levels in captive common marmosets (Callithrix jacchus): Reference values and effect of age, sex, season, and closure of long bone epiphyses. J Med Primatol 2018; 47:172-177. [PMID: 29446837 DOI: 10.1111/jmp.12334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND To date, reference values for 25-OH-vitamin D, parathyroid hormone (PTH), and calcium in serum of common marmosets (Callithrix jacchus) based on a large sample size are not available. METHODS Serum reference values for these parameters were determined and correlated with sex, age, season of sampling, and time of long bone epiphyseal closure in captive-housed marmosets. RESULTS AND CONCLUSIONS The 90% reference range for serum 25-OH-vitamin D is 47.40-370.4 nmol/L, for PTH 2.10-30.51 pmol/L, and for calcium 2.08-2.63 mmol/L. Lower levels of vitamin D were measured in fall compared with the other seasons. Levels of PTH were higher in males than in females, and calcium levels were lower in younger animals compared with older marmosets. No other effects of age, sex, season, or timing of growth plate closure were found.
Collapse
Affiliation(s)
- Leslie Bosseler
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ed Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jan A M Langermans
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Pieter Cornillie
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
32
|
Mentis AFA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand 2017; 136:606-616. [PMID: 28542724 PMCID: PMC7159535 DOI: 10.1111/ane.12775] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis is an immune-mediated disease with an environmental component. According to a long-standing but unproven hypothesis dating to initial descriptions of multiple sclerosis (MS) at the end of the 19th century, viruses are either directly or indirectly implicated in MS pathogenesis. Whether viruses in MS are principally causal or simply contributory remains to be proven, but many viruses or viral elements-predominantly Epstein-Barr virus, human endogenous retroviruses (HERVs) and human herpesvirus 6 (HHV-6) but also less common viruses such as Saffold and measles viruses-are associated with MS. Here, we present an up-to-date and comprehensive review of the main candidate viruses implicated in MS pathogenesis and summarize how these viruses might cause or lead to the hallmark demyelinating and inflammatory lesions of MS. We review data from epidemiological, animal and in vitro studies and in doing so offer a transdisciplinary approach to the topic. We argue that it is crucially important not to interpret "absence of evidence" as "evidence of absence" and that future studies need to focus on distinguishing correlative from causative associations. Progress in the MS-virus field is expected to arise from an increasing body of knowledge on the interplay between viruses and HERVs in MS. Such interactions suggest common HERV-mediated pathways downstream of viral infection that cause both neuroinflammation and neurodegeneration. We also comment on the limitations of existing studies and provide future research directions for the field.
Collapse
Affiliation(s)
- A.-F. A. Mentis
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
- The Johns Hopkins University, AAP; Baltimore MD USA
| | - E. Dardiotis
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; B’ Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - E. Petinaki
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - G. M. Hadjigeorgiou
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| |
Collapse
|
33
|
't Hart BA, Laman JD, Kap YS. Reverse Translation for Assessment of Confidence in Animal Models of Multiple Sclerosis for Drug Discovery. Clin Pharmacol Ther 2017; 103:262-270. [DOI: 10.1002/cpt.801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Bert A. 't Hart
- Department Immunobiology; Biomedical Primate Research Centre; Rijswijk The Netherlands
- University of Groningen, University Medical Centre, Dept. Neuroscience; Groningen The Netherlands
- MS Center Noord-Nederland; Groningen The Netherlands
| | - Jon D. Laman
- University of Groningen, University Medical Centre, Dept. Neuroscience; Groningen The Netherlands
- MS Center Noord-Nederland; Groningen The Netherlands
| | - Yolanda S. Kap
- Department Immunobiology; Biomedical Primate Research Centre; Rijswijk The Netherlands
| |
Collapse
|
34
|
't Hart BA, Dunham J, Faber BW, Laman JD, van Horssen J, Bauer J, Kap YS. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model. Front Immunol 2017; 8:804. [PMID: 28744286 PMCID: PMC5504154 DOI: 10.3389/fimmu.2017.00804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands.,MS Center Noord-Nederland, Groningen, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Brain Research Institute, Medical University Vienna, Vienna, Austria
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
35
|
Morandi E, Jagessar SA, 't Hart BA, Gran B. EBV Infection Empowers Human B Cells for Autoimmunity: Role of Autophagy and Relevance to Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 199:435-448. [PMID: 28592428 DOI: 10.4049/jimmunol.1700178] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
Abstract
The efficacy of B cell depletion therapy in multiple sclerosis indicates their central pathogenic role in disease pathogenesis. The B lymphotropic EBV is a major risk factor in multiple sclerosis, via as yet unclear mechanisms. We reported in a nonhuman primate experimental autoimmune encephalomyelitis model that an EBV-related lymphocryptovirus enables B cells to protect a proteolysis-sensitive immunodominant myelin oligodendrocyte glycoprotein (MOG) epitope (residues 40-48) against destructive processing. This facilitates its cross-presentation to autoaggressive cytotoxic MHC-E-restricted CD8+CD56+ T cells. The present study extends these observations to intact human B cells and identifies a key role of autophagy. EBV infection upregulated APC-related markers on B cells and activated the cross-presentation machinery. Although human MOG protein was degraded less in EBV-infected than in uninfected B cells, induction of cathepsin G activity by EBV led to total degradation of the immunodominant peptides MOG35-55 and MOG1-20 Inhibition of cathepsin G or citrullination of the arginine residue within an LC3-interacting region motif of immunodominant MOG peptides abrogated their degradation. Internalized MOG colocalized with autophagosomes, which can protect from destructive processing. In conclusion, EBV infection switches MOG processing in B cells from destructive to productive and facilitates cross-presentation of disease-relevant epitopes to CD8+ T cells.
Collapse
Affiliation(s)
- Elena Morandi
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham NG7 2UH, United Kingdom
| | - S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk 2288, the Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk 2288, the Netherlands.,Department of Neuroscience, University Medical Center, University of Groningen, Groningen 9700, the Netherlands; and
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham NG7 2UH, United Kingdom; .,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
36
|
Dunham J, van Driel N, Eggen BJ, Paul C, 't Hart BA, Laman JD, Kap YS. Analysis of the cross-talk of Epstein-Barr virus-infected B cells with T cells in the marmoset. Clin Transl Immunology 2017; 6:e127. [PMID: 28243437 PMCID: PMC5311918 DOI: 10.1038/cti.2017.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 02/06/2023] Open
Abstract
Despite the well-known association of Epstein–Barr virus (EBV), a lymphocryptovirus (LCV), with multiple sclerosis, a clear pathogenic role for disease progression has not been established. The translationally relevant experimental autoimmune encephalomyelitis (EAE) model in marmoset monkeys revealed that LCV-infected B cells have a central pathogenic role in the activation of T cells that drive EAE progression. We hypothesized that LCV-infected B cells induce T-cell functions relevant for EAE progression. In the current study, we examined the ex vivo cross-talk between lymph node mononuclear cells (MNCs) from EAE marmosets and (semi-) autologous EBV-infected B-lymphoblastoid cell lines (B-LCLs). Results presented here demonstrate that infection with EBV B95-8 has a strong impact on gene expression profile of marmoset B cells, particularly those involved with antigen processing and presentation or co-stimulation to T cells. At the cellular level, we observed that MNC co-culture with B-LCLs induced decrease of CCR7 expression on T cells from EAE responder marmosets, but not in EAE monkeys without clinically evident disease. B-LCL interaction with T cells also resulted in significant loss of CD27 expression and reduced expression of IL-23R and CCR6, which coincided with enhanced IL-17A production. These results highlight the profound impact that EBV-infected B-LCL cells can have on second and third co-stimulatory signals involved in (autoreactive) T-cell activation.
Collapse
Affiliation(s)
- Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; Department of Neuroscience, University Groningen, University Medical Center, Groningen, The Netherlands
| | - Nikki van Driel
- Department of Immunobiology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| | - Bart Jl Eggen
- Department of Neuroscience, University Groningen, University Medical Center , Groningen, The Netherlands
| | - Chaitali Paul
- Department of Neuroscience, University Groningen, University Medical Center , Groningen, The Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; Department of Neuroscience, University Groningen, University Medical Center, Groningen, The Netherlands
| | - Jon D Laman
- Department of Neuroscience, University Groningen, University Medical Center , Groningen, The Netherlands
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| |
Collapse
|
37
|
Primate autoimmune disease models; lost for translation? Clin Transl Immunology 2016; 5:e122. [PMID: 28435673 PMCID: PMC5384286 DOI: 10.1038/cti.2016.82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
Replacement, reduction and refinement (the 3R's) are the leading principles in translational research with animals. To be useful a model should also be clinically Relevant (the 4th R). Work in a non-human primate model of multiple sclerosis, the experimental autoimmune encephalomyelitis model, reveals an inherent conflict among these 4R principles. The impossibility to harmonize all 4R's forms a major challenge when the model is applied in preclinical drug development.
Collapse
|