1
|
Wu L, Li ZZ, Yang H, Cao LZ, Wang XY, Wang DL, Chatterjee E, Li YF, Huang G. Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. Basic Res Cardiol 2024:10.1007/s00395-024-01076-8. [PMID: 39158697 DOI: 10.1007/s00395-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.
Collapse
Affiliation(s)
- Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- School of Basic Medical Science, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Zhi-Zheng Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Zhi Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiao-Ying Wang
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dong-Liang Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yan-Fei Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
2
|
Li Z, Peng X, Zhu X, Spanos M, Wu L. Traditional Chinese Medicine Monomers Are Potential Candidate Drugs for Cancer-Induced Cardiac Cachexia. Pharmacology 2024:1-13. [PMID: 39250889 DOI: 10.1159/000540915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Cardiovascular diseases are now the second leading cause of death among cancer patients. Heart injury in patients with terminal cancer can lead to significant deterioration of left ventricular morphology and function. This specific heart condition is known as cancer-induced cardiac cachexia (CICC) and is characterized by cardiac dysfunction and wasting. However, an effective pharmacological treatment for CICC remains elusive. SUMMARY The development and progression of CICC are closely related to pathophysiological processes, such as protein degradation, oxidative responses, and inflammation. Traditional Chinese medicine (TCM) monomers offer unique advantages in reversing heart injury, which is the end-stage manifestation of CICC except the regular treatment. This review outlines significant findings related to the impact of eleven TCM monomers, namely Astragaloside IV, Ginsenosides Rb1, Notoginsenoside R1, Salidroside, Tanshinone II A, Astragalus polysaccharides, Salvianolate, Salvianolic acids A and B, and Ginkgolide A and B, on improving heart injury. These TCM monomers are potential therapeutic agents for CICC, each with specific mechanisms that could potentially reverse the pathological processes associated with CICC. Advanced drug delivery strategies, such as nano-delivery systems and exosome-delivery systems, are discussed as targeted administration options for the therapy of CICC. KEY MESSAGE This review summarizes the pathological mechanisms of CICC and explores the pharmacological treatment of TCM monomers that promote anti-inflammation, antioxidation, and pro-survival. It also considers pharmaceutical strategies for administering TCM monomers, highlighting their potential as therapies for CICC.
Collapse
Affiliation(s)
- Zhizheng Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Peng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Zhu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Wernhart S, Rassaf T. Relevance of Cardiovascular Exercise in Cancer and Cancer Therapy-Related Cardiac Dysfunction. Curr Heart Fail Rep 2024; 21:238-251. [PMID: 38696059 PMCID: PMC11090948 DOI: 10.1007/s11897-024-00662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF THE REVIEW Cancer therapy-related cardiac dysfunction (CTRCD) has been identified as a threat to overall and cancer-related survival. Although aerobic exercise training (AET) has been shown to improve cardiorespiratory fitness (CRF), the relationship between specific exercise regimens and cancer survival, heart failure development, and reduction of CTRCD is unclear. In this review, we discuss the impact of AET on molecular pathways and the current literature of sports in the field of cardio-oncology. RECENT FINDINGS Cardio-oncological exercise trials have focused on variations of AET intensity by using moderate continuous and high intensity interval training, which are applicable, safe, and effective approaches to improve CRF. AET increases CRF, reduces cardiovascular morbidity and heart failure hospitalization and should thus be implemented as an adjunct to standard cancer therapy, although its long-term effect on CTRCD remains unknown. Despite modulating diverse molecular pathways, it remains unknown which exercise regimen, including variations of AET duration and frequency, is most suited to facilitate peripheral and central adaptations to exercise and improve survival in cancer patients.
Collapse
Affiliation(s)
- Simon Wernhart
- Department of Cardiology and Vascular Medicine, West German Heart- and Vascular Center, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart- and Vascular Center, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| |
Collapse
|
4
|
Wang L, Wang X, Chen J, Liu Y, Wang G, Chen L, Ni W, Jia Y, Dai C, Shao W, Liu B. Low-intensity exercise training improves systolic function of heart during metastatic melanoma-induced cachexia in mice. Heliyon 2024; 10:e25562. [PMID: 38370171 PMCID: PMC10874746 DOI: 10.1016/j.heliyon.2024.e25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiac dysfunction frequently emerges in the initial stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a low-intensity exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in left ventricular ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.
Collapse
Affiliation(s)
- Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
- Liaoning University of Traditional Chinese Medicine, Chongshan East Road 79, Shenyang 110032, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yijia Jia
- Zhoukou Central Hospital, Renmin Road 26, Zhoukou, 466000, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
5
|
Gao T, Ren H, He S, Liang D, Xu Y, Chen K, Wang Y, Zhu Y, Dong H, Xu Z, Chen W, Cheng W, Jing F, Tao X. Development of an interpretable machine learning-based intelligent system of exercise prescription for cardio-oncology preventive care: A study protocol. Front Cardiovasc Med 2023; 9:1091885. [PMID: 38106819 PMCID: PMC10722170 DOI: 10.3389/fcvm.2022.1091885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/19/2023] Open
Abstract
Background Cardiovascular disease (CVD) and cancer are the first and second causes of death in over 130 countries across the world. They are also among the top three causes in almost 180 countries worldwide. Cardiovascular complications are often noticed in cancer patients, with nearly 20% exhibiting cardiovascular comorbidities. Physical exercise may be helpful for cancer survivors and people living with cancer (PLWC), as it prevents relapses, CVD, and cardiotoxicity. Therefore, it is beneficial to recommend exercise as part of cardio-oncology preventive care. Objective With the progress of deep learning algorithms and the improvement of big data processing techniques, artificial intelligence (AI) has gradually become popular in the fields of medicine and healthcare. In the context of the shortage of medical resources in China, it is of great significance to adopt AI and machine learning methods for prescription recommendations. This study aims to develop an interpretable machine learning-based intelligent system of exercise prescription for cardio-oncology preventive care, and this paper presents the study protocol. Methods This will be a retrospective machine learning modeling cohort study with interventional methods (i.e., exercise prescription). We will recruit PLWC participants at baseline (from 1 January 2025 to 31 December 2026) and follow up over several years (from 1 January 2027 to 31 December 2028). Specifically, participants will be eligible if they are (1) PLWC in Stage I or cancer survivors from Stage I; (2) aged between 18 and 55 years; (3) interested in physical exercise for rehabilitation; (4) willing to wear smart sensors/watches; (5) assessed by doctors as suitable for exercise interventions. At baseline, clinical exercise physiologist certificated by the joint training program (from 1 January 2023 to 31 December 2024) of American College of Sports Medicine and Chinese Association of Sports Medicine will recommend exercise prescription to each participant. During the follow-up, effective exercise prescription will be determined by assessing the CVD status of the participants. Expected outcomes This study aims to develop not only an interpretable machine learning model to recommend exercise prescription but also an intelligent system of exercise prescription for precision cardio-oncology preventive care. Ethics This study is approved by Human Experimental Ethics Inspection of Guangzhou Sport University. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2300077887.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Physical Education, Jinan University, Guangzhou, China
| | - Hao Ren
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China
- Faculty of Data Science, City University of Macau, Macao, Macao SAR, China
| | - Shan He
- Guangzhou Sport University, Guangzhou, China
| | - Deyi Liang
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuming Xu
- Division of Physical Education, Guangdong University of Finance and Economics, Guangzhou, China
- School of Education, City University of Macau, Macao, Macao SAR, China
| | - Kecheng Chen
- School of Data Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yufan Wang
- Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxin Zhu
- Syns Institute of Educational Research, Hong Kong, Hong Kong SAR, China
| | - Heling Dong
- School of Physical Education, Jinan University, Guangzhou, China
| | - Zhongzhi Xu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Weiming Chen
- Department of Health Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Weibin Cheng
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China
- School of Data Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fengshi Jing
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China
- Faculty of Data Science, City University of Macau, Macao, Macao SAR, China
- UNC Project-China, UNC Global, School of Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Xiaoyu Tao
- Zhuhai College of Science and Technology, Zhuhai, China
- ZCST Health and Medicine Industry Research Institute, Zhuhai, China
| |
Collapse
|
6
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Zhang K, Chen Y, Zhu J, Ge X, Wu J, Xu P, Yao J. Advancement of single-cell sequencing for clinical diagnosis and treatment of pancreatic cancer. Front Med (Lausanne) 2023; 10:1213136. [PMID: 37720505 PMCID: PMC10501729 DOI: 10.3389/fmed.2023.1213136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Single-cell sequencing is a high-throughput technique that enables detection of genomic, transcriptomic, and epigenomic information at the individual cell level, offering significant advantages in detecting cellular heterogeneity, precise cell classification, and identifying rare subpopulations. The technique holds tremendous potential in improving the diagnosis and treatment of pancreatic cancer. Moreover, single-cell sequencing provides unique insights into the mechanisms of pancreatic cancer metastasis and cachexia, paving the way for developing novel preventive strategies. Overall, single-cell sequencing has immense potential in promoting early diagnosis, guiding personalized treatment, and preventing complications of pancreatic cancer. Emerging single-cell sequencing technologies will undoubtedly enhance our understanding of the complex biology of pancreatic cancer and pave the way for new directions in its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian Medical University, Dalian, China
| | - Yuan Chen
- Medical College of Yangzhou University, Yangzhou, China
| | - Jie Zhu
- Medical College of Yangzhou University, Yangzhou, China
| | - Xinyu Ge
- Dalian Medical University, Dalian, China
| | - Junqing Wu
- Medical College of Yangzhou University, Yangzhou, China
| | - Peng Xu
- Northern Jiangsu People’s Hospital Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jie Yao
- Northern Jiangsu People’s Hospital Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Hill L, Delgado B, Lambrinou E, Mannion T, Harbinson M, McCune C. Risk and Management of Patients with Cancer and Heart Disease. Cardiol Ther 2023; 12:227-241. [PMID: 36757637 PMCID: PMC10209380 DOI: 10.1007/s40119-023-00305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and cardiovascular disease are two of the leading causes of global mortality and morbidity. Medical research has generated powerful lifesaving treatments for patients with cancer; however, such treatments may sometimes be at the expense of the patient's myocardium, leading to heart failure. Anti-cancer drugs, including anthracyclines, can result in deleterious cardiac effects, significantly impacting patients' functional capacity, mental well-being, and quality of life. Recognizing this, recent international guidelines and expert papers published recommendations on risk stratification and care delivery, including that of cardio-oncology services. This review will summarize key evidence with a focus on anthracycline therapy, providing clinical guidance for the non-oncology professional caring for a patient with cancer and heart failure.
Collapse
Affiliation(s)
- Loreena Hill
- School of Nursing and Midwifery, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- College of Nursing and Midwifery, Mohammed Bin Rashid University, Dubai, United Arab Emirates.
| | - Bruno Delgado
- Cardiology Department, University Hospital Centre of Oporto, Stº António Hospital, Oporto, Portugal
- Institute of Health Sciences, Portuguese Catholic University, Oporto, Portugal
| | | | - Tara Mannion
- Beaumont Hospital, Dublin, Ireland
- School of Nursing, Midwifery and Health Systems, University College Dublin, Dublin, Ireland
| | - Mark Harbinson
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Claire McCune
- School of Medicine Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
- Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
9
|
Maggio S, Canonico B, Ceccaroli P, Polidori E, Cioccoloni A, Giacomelli L, Ferri Marini C, Annibalini G, Gervasi M, Benelli P, Fabbri F, Del Coco L, Fanizzi FP, Giudetti AM, Lucertini F, Guescini M. Modulation of the Circulating Extracellular Vesicles in Response to Different Exercise Regimens and Study of Their Inflammatory Effects. Int J Mol Sci 2023; 24:ijms24033039. [PMID: 36769362 PMCID: PMC9917742 DOI: 10.3390/ijms24033039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Exercise-released extracellular vesicles (EVs) are emerging as a novel class of exerkines that promotes systemic beneficial effects. However, slight differences in the applied exercise protocols in terms of mode, intensity and duration, as well as the need for standardized protocols for EV isolation, make the comparison of the studies in the literature extremely difficult. This work aims to investigate the EV amount and EV-associated miRNAs released in circulation in response to different physical exercise regimens. Healthy individuals were subjected to different exercise protocols: acute aerobic exercise (AAE) and training (AT), acute maximal aerobic exercise (AMAE) and altitude aerobic training (AAT). We found a tendency for total EVs to increase in the sedentary condition compared to trained participants following AAE. Moreover, the cytofluorimetric analysis showed an increase in CD81+/SGCA+/CD45- EVs in response to AAE. Although a single bout of moderate/maximal exercise did not impact the total EV number, EV-miRNA levels were affected as a result. In detail, EV-associated miR-206, miR-133b and miR-146a were upregulated following AAE, and this trend appeared intensity-dependent. Finally, THP-1 macrophage treatment with exercise-derived EVs induced an increase of the mRNAs encoding for IL-1β, IL-6 and CD163 using baseline and immediately post-exercise EVs. Still, 1 h post-exercise EVs failed to stimulate a pro-inflammatory program. In conclusion, the reported data provide a better understanding of the release of circulating EVs and their role as mediators of the inflammatory processes associated with exercise.
Collapse
Affiliation(s)
- Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Emanuela Polidori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Andrea Cioccoloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Luca Giacomelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Carlo Ferri Marini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Benelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Laura Del Coco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Centro Ecotekne, Monteroni, 73047 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Centro Ecotekne, Monteroni, 73047 Lecce, Italy
| | - Anna Maria Giudetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Centro Ecotekne, Monteroni, 73047 Lecce, Italy
| | - Francesco Lucertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| |
Collapse
|
10
|
Miki A, Sakuma Y, Watanabe J, Endo K, Sasanuma H, Teratani T, Lefor AK, Kitayama J, Sata N. Osteopenia Is Associated with Shorter Survival in Patients with Intrahepatic Cholangiocarcinoma. Curr Oncol 2023; 30:1860-1868. [PMID: 36826105 PMCID: PMC9955432 DOI: 10.3390/curroncol30020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prognostic importance of osteopenia in patients with intrahepatic cholangiocarcinoma (ICC) undergoing hepatectomy is unclear. The aim of this study was to evaluate the impact of osteopenia on survival in patients with ICC. METHODS A total of 71 patients who underwent hepatectomy at Jichi Medical University between July 2008 and June 2022 were included in this study. Non-contrast computed tomography scan images at the eleventh thoracic vertebra were used to assess bone mineral density. The cutoff value was calculated using a threshold value of 160 Hounsfield units. Overall survival curves were made using the Kaplan-Meier method and the log-rank test was used to evaluate survival. The hazard ratio (HR) and 95% confidence interval (CI) for overall survival were calculated using Cox's proportional hazard model. RESULTS In multivariable analysis, osteopenia (HR 3.66, 95%CI 1.16-14.1, p = 0.0258) and the platelet-lymphocyte ratio (HR 6.26, 95%CI 2.27-15.9, p = 0.0008) were significant independent factors associated with overall survival. There were no significant independent prognostic factors for recurrence-free survival. CONCLUSIONS Preoperative osteopenia is significantly associated with postoperative survival in patients with ICC undergoing hepatectomy.
Collapse
Affiliation(s)
- Atsushi Miki
- Correspondence: ; Tel.: +81-285-57-7371; Fax: +81-285-44-3234
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Do JH, Gelvosa MN, Choi KY, Kim H, Kim JY, Stout NL, Cho YK, Kim HR, Kim YH, Kim SA, Jeon JY. Effects of Multimodal Inpatient Rehabilitation vs Conventional Pulmonary Rehabilitation on Physical Recovery After Esophageal Cancer Surgery. Arch Phys Med Rehabil 2022; 103:2391-2397. [PMID: 35760108 DOI: 10.1016/j.apmr.2022.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the effects of multimodal rehabilitation initiated immediately after esophageal cancer surgery on physical recovery compared with conventional pulmonary rehabilitation. DESIGN Retrospective study. SETTING Private quaternary care hospital. PARTICIPANTS Fifty-nine inpatients (N=59) who participated in either conventional pulmonary rehabilitation (n=30) or in multimodal rehabilitation (n=29) after esophageal cancer surgery were included. INTERVENTIONS Both groups performed pulmonary exercises, including deep breathing, chest expansion, inspiratory muscle training, coughing, and manual vibration. In the conventional pulmonary rehabilitation group, light-intensity mat exercise, stretching, and walking were performed. The multimodal rehabilitation group performed resistance exercises and moderate- to high-intensity aerobic interval exercises using a bicycle. MAIN OUTCOME MEASURES The European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire C30 (EORTC QLQ-C30), pain, 6-minute walk test (6MWT), 30-second chair stand test, and grip strengths were assessed before and after the rehabilitation programs. RESULTS Symptom scales of pain, dyspnea, and insomnia in the EORTC QLQ-C30 as well as 6MWT improved significantly after each program (P<.05). 6MWT (73.1±52.6 vs 28.4±14.3, P<.001, d=1.15), 30-second chair stand test (3.5±3.9 vs 0.35±2.0, P<.001, d=1.06), and left grip strength (1.2±1.3 vs 0.0±1.5, P=.002, d=0.42) improved significantly in the multimodal rehabilitation group compared with the pulmonary rehabilitation group. While right grip strength also showed more improvement for those undergoing the multimodal program, the mean strength difference was not clinically meaningful. CONCLUSIONS A multimodal inpatient rehabilitation program instituted early after esophageal cancer surgery improved endurance for walking more than conventional pulmonary rehabilitation as measured by the 6MWT and the 30-second chair stand test.
Collapse
Affiliation(s)
- Jung Hwa Do
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ma Nessa Gelvosa
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Yong Choi
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hwal Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ja Young Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Nicole L Stout
- West Virginia University School of Public Health, West Virginia University Cancer Institute, Morgantown, West Virginia, United States
| | - Young Ki Cho
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyeong Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong-Hee Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Ah Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Yong Jeon
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
13
|
Wu L, Li Z, Li Y. The crosstalk between STAT3 and microRNA in cardiac diseases and protection. Front Cardiovasc Med 2022; 9:986423. [PMID: 36148063 PMCID: PMC9485608 DOI: 10.3389/fcvm.2022.986423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), an important transcription factor and signaling molecule, play an important role in cardiac disease and protection. As a transcription factor, STAT3 upregulates anti-oxidative and anti-apoptotic genes but suppresses anti-inflammatory and anti-fibrotic genes in cardiac disease and protection. As a signaling molecule, STAT3 is the downstream or upstream of other molecules for signaling transduction, also activated in cardiac disease and protection. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that regulate mRNA expression at the transcriptional level and prevent protein translation. Recently, STAT3 is reported to be not only the target of miRNA but also the inhibitor or inducer of miRNA to modify the mRNA expression profiles in cardiomyocytes resulting in different effects on cardiac disease and protection. We summarize the current knowledge on STAT3 regulation of individual miRNAs and the modulation of STAT3 by miRNAs in cardiac diseases and protection.
Collapse
Affiliation(s)
- Lan Wu
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Lan Wu
| | - Zhizheng Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yanfei Li
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
14
|
Candow DG, Chilibeck PD, Forbes SC, Fairman CM, Gualano B, Roschel H. Creatine supplementation for older adults: Focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone 2022; 162:116467. [PMID: 35688360 DOI: 10.1016/j.bone.2022.116467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia refers to the age-related reduction in strength, muscle mass and functionality which increases the risk for falls, injuries and fractures. Sarcopenia is associated with other age-related conditions such as osteoporosis, frailty and cachexia. Identifying treatments to overcome sarcopenia and associated conditions is important from a global health perspective. There is evidence that creatine monohydrate supplementation, primarily when combined with resistance training, has favorable effects on indices of aging muscle and bone. These musculoskeletal benefits provide some rationale for creatine being a potential intervention for treating frailty and cachexia. The purposes of this narrative review are to update the collective body of research pertaining to the effects of creatine supplementation on indices of aging muscle and bone (including bone turnover markers) and present possible justification and rationale for its utilization in the treatment of frailty and cachexia in older adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University Brandon, MB, Canada
| | - Ciaran M Fairman
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Cancer- and cardiac-induced cachexia: same fate through different inflammatory mediators? Inflamm Res 2022; 71:771-783. [PMID: 35680678 DOI: 10.1007/s00011-022-01586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Inflammation is widely recognized as the driving force of cachexia induced by chronic diseases; however, therapies targeting inflammation do not always reverse cachexia. Thus, whether inflammation per se plays an important role in the clinical course of cachectic patients is still a matter of debate. AIMS To give new insights into cachexia's pathogenesis and diagnosis, we performed a comprehensive literature search on the contribution of inflammatory markers to this syndrome, focusing on the noncommunicable diseases cancer and cardiovascular diseases. METHODS A systematic review was performed in PubMed using the keywords ("cancer" OR "cardiac" cachexia AND "human" OR "patient" AND "plasma" or "serum"). A total of 744 studies were retrieved and, from these, 206 were selected for full-text screening. In the end, 98 papers focusing on circulating biomarkers of cachexia were identified, which resulted in a list of 113 different mediators. RESULTS Data collected from the literature highlight the contribution of interleukin-6 (IL-6) and C-reactive protein (CRP) to cachexia, independently of the underlying condition. Despite not being specific, once the diagnosis of cachexia is established, CRP might help to monitor the effectiveness of anti-cachexia therapies. In cardiac diseases, B-type natriuretic peptide (BNP), renin, and obestatin might be putative markers of body wasting, whereas in cancer, growth differentiation factor (GDF) 15, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) C seem to be better markers of this syndrome. Independently of the circulating mediators, NF-κB and JAK/STAT signaling pathways play a key role in bridging inflammation with muscle wasting; however, therapies targeting these pathways were not proven effective for all cachectic patients. CONCLUSION The critical and integrative analysis performed herein will certainly feed future research focused on the better comprehension of cachexia pathogenesis toward the improvement of its diagnosis and the development of personalized therapies targeting specific cachexia phenotypes.
Collapse
|
16
|
The Role of Autophagy Modulated by Exercise in Cancer Cachexia. Life (Basel) 2021; 11:life11080781. [PMID: 34440525 PMCID: PMC8402221 DOI: 10.3390/life11080781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome experienced by many patients with cancer. Exercise can act as an autophagy modulator, and thus holds the potential to be used to treat cancer cachexia. Autophagy imbalance plays an important role in cancer cachexia, and is correlated to skeletal and cardiac muscle atrophy and energy-wasting in the liver. The molecular mechanism of autophagy modulation in different types of exercise has not yet been clearly defined. This review aims to elaborate on the role of exercise in modulating autophagy in cancer cachexia. We evaluated nine studies in the literature and found a potential correlation between the type of exercise and autophagy modulation. Combined exercise or aerobic exercise alone seems more beneficial than resistance exercise alone in cancer cachexia. Looking ahead, determining the physiological role of autophagy modulated by exercise will support the development of a new medical approach for treating cancer cachexia. In addition, the harmonization of the exercise type, intensity, and duration might play a key role in optimizing the autophagy levels to preserve muscle function and regulate energy utilization in the liver.
Collapse
|
17
|
D'Ascenzi F, Anselmi F, Fiorentini C, Mannucci R, Bonifazi M, Mondillo S. The benefits of exercise in cancer patients and the criteria for exercise prescription in cardio-oncology. Eur J Prev Cardiol 2021; 28:725-735. [PMID: 31587570 DOI: 10.1177/2047487319874900] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Cancer and cardiovascular diseases are the leading causes of death in high-income countries. Cardiovascular complications can be found in cancer patients, being the result of so-called 'cardio-toxicity'. Therefore, it becomes essential to thoroughly investigate the origin of cardiac damage and the strategy to prevent it or to reverse the negative remodelling associated with cardiotoxicity. In this review the beneficial effects of physical exercise in cancer patients were analysed, particularly to prevent cardio-toxicity before its clinical manifestation. According to the relevance of exercise, we suggest strategies for exercise prescription with a tailored approach in these patients. In conclusion, physical exercise seems to be a promising and effective treatment for cancer patients during and after therapy and seems to counteract the negative effects induced by drugs on the cardiovascular system. Exercise prescription should be tailored according to patient's individual characteristics, to the drugs administered, to the personal history, and to his/her response to exercise, taking into account that different types of training can be prescribed according also to the patient's choice. A cardiological evaluation including exercise testing is essential for an appropriate prescription of exercise in these patients.
Collapse
Affiliation(s)
- Flavio D'Ascenzi
- Department of Medical Biotechnologies, University of Siena, Italy
- Department of Medicine, University of Pittsburgh, USA
| | | | | | - Roberta Mannucci
- Institute for Health, University of Pittsburgh Medical Center, C. Terme (Siena), Italy
| | - Marco Bonifazi
- Department of Medicine, Science, and Neurosciences, University of Siena, Italy
| | - Sergio Mondillo
- Department of Medical Biotechnologies, University of Siena, Italy
| |
Collapse
|
18
|
Ausoni S, Calamelli S, Saccà S, Azzarello G. How progressive cancer endangers the heart: an intriguing and underestimated problem. Cancer Metastasis Rev 2021; 39:535-552. [PMID: 32152913 DOI: 10.1007/s10555-020-09869-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since it came into being as a discipline, cardio-oncology has focused on the prevention and treatment of cardiotoxicity induced by antitumor chemotherapy and radiotherapy. Over time, it has been proved that even more detrimental is the direct effect generated by cancer cells that release pro-cachectic factors in the bloodstream. Secreted molecules target different organs at a distance, including the heart. Inflammatory and neuronal modulators released by the tumor bulk, either as free molecules or through exosomes, contribute to the pathogenesis of cardiac disease. Progressive cancer causes cachexia and severe cardiac muscle wasting accompanied by cardiomyocyte atrophy, tissue fibrosis, and several functional impairments up to heart failure. The molecular mechanisms responsible for such a cardiac muscle wasting have been partially elucidated in animal models, but minimally investigated in humans, although severe cardiac dysfunction exacerbates global cachexia and hampers efficient anti-cancer treatments. This review provides an overview of cancer-induced structural cardiac and functional damage, drawing on both clinical and scientific research. We start by looking at the pathophysiological mechanisms and evolving epidemiology and go on to discuss prevention, diagnosis, and a multimodal policy of intervention aimed at providing overall prognosis and global care for patients. Despite much interest in the cardiotoxicity of cancer therapies, the direct tumor effect on the heart remains poorly explored. There is still a lack of diagnostic criteria for the identification of the early stages of cardiac disease in cancer patients, while the possibilities that there are for effective prevention are largely underestimated. Research on innovative therapies has claimed considerable advances in preclinical studies, but none of the molecular targets suitable for clinical application has been approved for therapy. These issues are critically discussed here.
Collapse
Affiliation(s)
- Simonetta Ausoni
- Department of Biomedical Sciences, University of Padua, Padova, Italy.
| | - Sara Calamelli
- Department of Cardiology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy
| | - Salvatore Saccà
- Department of Cardiology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy
| | - Giuseppe Azzarello
- Department of Medical Oncology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy.
| |
Collapse
|
19
|
Fernandes LG, Tobias GC, Paixão AO, Dourado PM, Voltarelli VA, Brum PC. Exercise training delays cardiac remodeling in a mouse model of cancer cachexia. Life Sci 2020; 260:118392. [PMID: 32898523 DOI: 10.1016/j.lfs.2020.118392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Abstract
AIMS We aimed to investigate the impact of cancer cachexia and previous aerobic exercise training (AET) on cardiac function and structure in tumor bearing mice. MAIN METHODS Colon adenocarcinoma cells 26 (CT26) were subcutaneously injected in BALB/c mice to establish robust cancer cachexia model. AET was performed on a treadmill during 45 days, 60 min/5 days per week. Cardiac function was evaluated by echocardiography and cardiac morphology was assessed by light microscopy. The protein expression levels of mitochondrial complex were analyzed by Western blotting. The mRNA levels of genes related to cardiac remodeling and autophagy were analyzed by quantitative Real-Time PCR. KEY FINDINGS Our data confirms CT26 tumor bearing mice as a well-characterized and robust model of cancer cachexia. CT26 mice exhibited cardiac remodeling and dysfunction characterized by cardiac atrophy and impaired left ventricle ejection fraction paralleled by cardiac necrosis, inflammation and fibrosis. AET partially reversed the left ventricle ejection fraction and led to significant anti-cardiac remodeling effect associated reduced necrosis, inflammation and cardiac collagen deposition in CT26 mice. Reduced TGF-β1 mRNA levels, increased mitochondrial complex IV protein levels and partial recovery of BNIP3 mRNA levels in cardiac tissue were associated with the cardiac effects of AET in CT26 mice. Thus, we suggest AET as a powerful regulator of key pathways involved in cardiac tissue homeostasis in cancer cachexia. SIGNIFICANCE Our study provides a robust model of cancer cachexia, as well as highlights the potential and integrative effects of AET as a preventive strategy for reducing cardiac damage in cancer cachexia.
Collapse
Affiliation(s)
- L G Fernandes
- Department of Experimental Pathophysiology, Medical School, University of Sao Paulo, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - G C Tobias
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - A O Paixão
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - P M Dourado
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - V A Voltarelli
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - P C Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
20
|
Nonaka M, Ueno S, Uezono Y. [Cardio-oncology - elucidation of the mechanism of cardiac dysfunction caused by cancer therapy and cancer cachexia]. Nihon Yakurigaku Zasshi 2020; 155:165-170. [PMID: 32378637 DOI: 10.1254/fpj.19123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cardiovascular disorders in cancer patients with cachexia have recently become a great concern. However, the relationship between cancer cachexia and cardiac dysfunction remains unclear, due to lack of suitable models. We established a novel murine model of cancer cachexia by implantation of 85As2 cells, a cell line derived from human gastric cancer cells, presenting anorexia, weight loss and low fat-free mass similar to those observed in patients. Moreover, cardiac dysfunction is expected in this model, which has not been yet examined. In the present study, we firstly evaluated cardiac functions with the model. Secondly, we investigated effects of voluntary wheel running (VWR) on cachexia-induced cardiac dysfunction using this model, as the exercise is considered to be one of therapies for chronic heart failure. 85As2 cells were transplanted subcutaneously into mice, which observed a symptomatic cachexia; decrease in body, skeletal muscle weight, and food intake. In addition, this cachexia mouse developed severe cardiac atrophy and left ventricular ejection fraction (LVEF) also markedly reduced with cachexia progression. Moreover, VWR suppressed the decrease in food intake and skeletal muscle weight loss in this model, and improved LVEF with suppression of heart weight loss. These results imply that our 85As2-cachexia mice models show cardiac dysfunction and VWR may improve not only cachexia symptoms but also cardiac dysfunction. As exercise therapy is generally introduced for the purpose of improving heart failure symptoms, this study suggests a possible therapeutic effect of exercise on cardiac dysfunction induced by cancer cachexia.
Collapse
Affiliation(s)
- Miki Nonaka
- Division of Cancer Pathophysiology, National Cancer Center Research Institute.,Department of Pain Control Research, The Jikei University School of Medicine
| | - Susumu Ueno
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute.,Department of Pain Control Research, The Jikei University School of Medicine.,Division of Supportive Care Research, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center
| |
Collapse
|
21
|
Ghanemi A, Melouane A, Yoshioka M, St-Amand J. Exercise and High-Fat Diet in Obesity: Functional Genomics Perspectives of Two Energy Homeostasis Pillars. Genes (Basel) 2020; 11:genes11080875. [PMID: 32752100 PMCID: PMC7463441 DOI: 10.3390/genes11080875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
The heavy impact of obesity on both the population general health and the economy makes clarifying the underlying mechanisms, identifying pharmacological targets, and developing efficient therapies for obesity of high importance. The main struggle facing obesity research is that the underlying mechanistic pathways are yet to be fully revealed. This limits both our understanding of pathogenesis and therapeutic progress toward treating the obesity epidemic. The current anti-obesity approaches are mainly a controlled diet and exercise which could have limitations. For instance, the “classical” anti-obesity approach of exercise might not be practical for patients suffering from disabilities that prevent them from routine exercise. Therefore, therapeutic alternatives are urgently required. Within this context, pharmacological agents could be relatively efficient in association to an adequate diet that remains the most efficient approach in such situation. Herein, we put a spotlight on potential therapeutic targets for obesity identified following differential genes expression-based studies aiming to find genes that are differentially expressed under diverse conditions depending on physical activity and diet (mainly high-fat), two key factors influencing obesity development and prognosis. Such functional genomics approaches contribute to elucidate the molecular mechanisms that both control obesity development and switch the genetic, biochemical, and metabolic pathways toward a specific energy balance phenotype. It is important to clarify that by “gene-related pathways”, we refer to genes, the corresponding proteins and their potential receptors, the enzymes and molecules within both the cells in the intercellular space, that are related to the activation, the regulation, or the inactivation of the gene or its corresponding protein or pathways. We believe that this emerging area of functional genomics-related exploration will not only lead to novel mechanisms but also new applications and implications along with a new generation of treatments for obesity and the related metabolic disorders especially with the modern advances in pharmacological drug targeting and functional genomics techniques.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Aicha Melouane
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-418-654-2296; Fax: +1-418-654-2761
| |
Collapse
|
22
|
Berent TE, Dorschner JM, Meyer T, Craig TA, Wang X, Kunz H, Jatoi A, Lanza IR, Chen H, Kumar R. Impaired cardiac performance, protein synthesis, and mitochondrial function in tumor-bearing mice. PLoS One 2019; 14:e0226440. [PMID: 31851697 PMCID: PMC6919625 DOI: 10.1371/journal.pone.0226440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background To understand the underlying mechanisms of cardiac dysfunction in cancer, we examined cardiac function, protein synthesis, mitochondrial function and gene expression in a model of heart failure in mice injected with Lewis lung carcinoma (LLC1) cells. Experimental design Seven week-old C57BL/J6 male and female mice were injected with LLC1 cells or vehicle. Cardiac ejection fraction, ventricular wall and septal thickness were reduced in male, but not female, tumor-bearing mice compared to vehicle-injected control mice. Cardiac protein synthesis was reduced in tumor-bearing male mice compared to control mice (p = 0.025). Aspect ratio and form factor of cardiac mitochondria from the tumor-bearing mice were increased compared control mice (p = 0.042 and p = 0.0032, respectively) indicating a more fused mitochondrial network in the hearts of tumor-bearing mice. In cultured cardiomyocytes maximal oxygen consumption and mitochondrial reserve capacity were reduced in cells exposed to tumor cell-conditioned medium compared to non-conditioned medium (p = 0.0059, p = 0.0010). Whole transcriptome sequencing of cardiac ventricular muscle from tumor-bearing vs. control mice showed altered expression of 1648 RNA transcripts with a false discovery rate of less than 0.05. Of these, 54 RNA transcripts were reduced ≤ 0.5 fold, and 3 RNA transcripts were increased by ≥1.5-fold in tumor-bearing mouse heart compared to control. Notably, the expression of mRNAs for apelin (Apln), the apelin receptor (Aplnr), the N-myc proto-oncogene, early growth protein (Egr1), and the transcription factor Sox9 were reduced by >50%, whereas the mRNA for growth arrest and DNA-damage-inducible, beta (Gadd45b) is increased >2-fold, in ventricular tissue from tumor-bearing mice compared to control mice. Conclusions Lung tumor cells induce heart failure in male mice in association with reduced protein synthesis, mitochondrial function, and the expression of the mRNAs for inotropic and growth factors. These data provide new mechanistic insights into cancer-associated heart failure that may help unlock treatment options for this condition.
Collapse
Affiliation(s)
- Taylor E Berent
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jessica M Dorschner
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thomas Meyer
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Theodore A Craig
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xuewei Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hawley Kunz
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aminah Jatoi
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ian R Lanza
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Horng Chen
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.,Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.,Department of Biochemistry and Molecular Biology; Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
23
|
Corbi G, Polito R, Monaco ML, Cacciatore F, Scioli M, Ferrara N, Daniele A, Nigro E. Adiponectin Expression and Genotypes in Italian People with Severe Obesity Undergone a Hypocaloric Diet and Physical Exercise Program. Nutrients 2019; 11:nu11092195. [PMID: 31547312 PMCID: PMC6769478 DOI: 10.3390/nu11092195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/16/2022] Open
Abstract
Adiponectin exerts positive effects on metabolic and inflammatory processes. Adiponectin levels and some single-nucleotide polymorphisms (SNPs) seem to be associated with obesity. Here, we investigated the effects of a 4-week Hypocaloric diet and Physical exercise Program (HPP) on 268 young people with severe obesity. We evaluated the relationship between adiponectin levels and anthropometric and biochemical parameters, at baseline and after a 4-week HPP. Finally, we investigated some adiponectin gene variants and their correlation to biochemical parameters. Adiponectin levels were statistically lower in people with severe obesity than in controls. At the end of the HPP, all the people with severe obesity showed a Body Mass Index (BMI) reduction with a statistically significant increase in adiponectin levels. Genotyping, the adiponectin gene demonstrated a significant difference in 3 polymorphisms within the people with severe obesity. Besides, c.11377C>G and c.11391G>A homozygous subjects experienced more advantages by HPP. Furthermore, c.268G>A heterozygous subjects showed an enhancement in lipid profile as well in adiponectin levels. The best predictor of the changes in adiponectin levels was represented by the c.268G>A WT allele. Our study confirmed that a 4-weeks HPP in people with severe obesity results in metabolic amelioration associated with a significant increase of adiponectin levels. Importantly, we found that a specific genetic background in the ADIPOQ gene can predispose toward a more significant weight loss.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Dipartimento di Medicina e Scienze della Salute, Università del Molise, 86100 Campobasso, Italy
| | - Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- CEINGE-Biotecnologie Avanzate, 80131 Napoli, Italy
| | | | - Francesco Cacciatore
- Dipartimento di scienze mediche traslazionali, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Michelina Scioli
- Laboratorio della valutazione della complessità clinica, Istituti Clinici Scientifici Maugeri Spa SB, 82037 Telese, Italy
| | - Nicola Ferrara
- Dipartimento di scienze mediche traslazionali, Università di Napoli "Federico II", 80131 Napoli, Italy
- Laboratorio della valutazione della complessità clinica, Istituti Clinici Scientifici Maugeri Spa SB, 82037 Telese, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
- CEINGE-Biotecnologie Avanzate, 80131 Napoli, Italy.
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- CEINGE-Biotecnologie Avanzate, 80131 Napoli, Italy
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Cancer-associated muscle wasting affects many patients and leads to reduced patient function, decreased quality of life and poor responses to surgical and oncological treatments. Despite advancements in the understanding of its pathophysiology, no current treatment or accepted strategy for successful management exists. In this review, we provide an update on potential novel therapeutic targets in cancer cachexia. RECENT FINDINGS Recent research has focused on molecular mechanisms underlying cancer-associated muscle wasting, allowing identification of potential therapeutic targets and the development of several promising drugs. However, due to the multifactorial and patient-specific pathogenesis of cachexia, the demonstration of a measurable and meaningful clinical effect in randomized controlled trials has proven difficult. Potential novel targets such as circulating macrophage inhibitory cytokine 1/growth differentiation factor 15 and ZRT/IRT-like protein 14 have shown relevance in animal models, but their therapeutic manipulation has yet to be translated to patients. Increasing evidence has suggested that a single therapy may not be successful and a targeted, multimodal approach is required. SUMMARY The management of cancer-associated muscle wasting is complex. Future clinical trials should focus on early multimodal therapeutic interventions involving targeted therapies, with careful deliberation of chosen nutritional and functional outcomes.
Collapse
Affiliation(s)
- Janice Miller
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
25
|
Exercise Training Impacts Cardiac Mitochondrial Proteome Remodeling in Murine Urothelial Carcinoma. Int J Mol Sci 2018; 20:ijms20010127. [PMID: 30602657 PMCID: PMC6337197 DOI: 10.3390/ijms20010127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022] Open
Abstract
Cardiac dysfunction secondary to cancer may exert a negative impact in patients’ tolerance to therapeutics, quality of life, and survival. The aim of this study was to evaluate the potential therapeutic effect of exercise training on the heart in the setting of cancer, after diagnosis. Thus, the molecular pathways harbored in heart mitochondria from a murine model of chemically-induced urothelial carcinoma submitted to 8-weeks of high intensity treadmill exercise were characterized using mass spectrometry-based proteomics. Data highlight the protective effects of high intensity exercise training in preventing left ventricle diastolic dysfunction, fibrosis, and structural derangement observed in tumor-bearing mice. At the mitochondrial level, exercise training counteracted the lower ability to produce ATP observed in the heart of animals with urothelial carcinoma and induced the up-regulation of fatty acid oxidation and down-regulation of the biological process “cardiac morphogenesis”. Taken together, our data support the prescription of exercise training after cancer diagnosis for the management of disease-related cardiac dysfunction.
Collapse
|
26
|
Zucker IH, Musch TI. Benefits of exercise training on cardiovascular dysfunction: molecular and integrative. Am J Physiol Heart Circ Physiol 2018; 315:H1027-H1031. [PMID: 30074833 DOI: 10.1152/ajpheart.00516.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise training has been shown to ameliorate a wide variety of cardiovascular disorders. The mechanisms by which long-term benefits of exercise training are mediated remains incomplete, despite intense research in this area. Exactly how the act of chronic exercise improves function in every tissue is unknown, but many of the cellular, molecular, and genetic mechanisms are becoming progressively clearer. This "Perspectives" article reviews the contributions of 15 articles published in the American Journal of Physiology-Heart and Circulatory Physiology in response to a Call for Papers in this area. Here, we summarize the contributions of these studies at the cardiac, vascular, immune, and molecular levels. We discuss the translational benefit of these studies and conclude that the beneficial effects of exercise training in cardiovascular disease is due to a large interplay of cellular and molecular mediators in the heart and peripheral vasculature as well as changes in neural elements that regulate blood pressure and blood flow. Readers are encouraged to evaluate and learn from this collection of novel studies.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Timothy I Musch
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|