1
|
Liu H, Qiu L, Li H, Tang Y, Wang F, Song Y, Pan Y, Li R, Yan X. A 3D-printed acinar-mimetic silk fibroin-collagen-astragalus polysaccharide scaffold for tissue reconstruction and functional repair of damaged parotid glands. Int J Biol Macromol 2024; 277:134427. [PMID: 39097050 DOI: 10.1016/j.ijbiomac.2024.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Salivary glands are the principal organs responsible for secreting saliva in the oral cavity. Tumors, trauma, inflammation, and other factors can cause functional or structural damage to the glands, leading to reduced saliva secretion. In this study, we innovatively prepared a acinar-mimetic silk fibroin-collagen-astragalus polysaccharide (SCA) scaffold using low-temperature three-dimensional (3D) printing and freeze-drying techniques. We evaluated the material properties and cell compatibility of the scaffold in vitro and implanted it into the damaged parotid glands (PG) of rats to assess its efficacy in tissue reconstruction and functional repair. The results demonstrated that the SCA scaffold featured a porous structure resembling natural acini, providing an environment conducive to cell growth and orderly aggregation. It exhibited excellent porosity, water absorption, mechanical properties, and biocompatibility, fulfilling the requirements for tissue engineering scaffolds. In vitro, the scaffold facilitated adhesion, proliferation, orderly polarization, and spherical aggregation of PG cells. In vivo, the SCA scaffold effectively recruited GECs locally, forming gland-like acinar structures that matured gradually, promoting the regeneration of damaged PGs. The SCA scaffold developed in this study supports tissue reconstruction and functional repair of damaged PGs, making it a promising implant material for salivary gland regeneration.
Collapse
Affiliation(s)
- Han Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology, China
| | - Haoyuan Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yanli Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Fang Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yangyang Song
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yiwei Pan
- Eye Hospital China Academy of Chinese Medicine Sciences, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, China.
| | - Xing Yan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China.
| |
Collapse
|
2
|
Toan NK, Kim SA, Ahn SG. Neuropeptides regulate embryonic salivary gland branching through the FGF/FGFR pathway in aging klotho-deficient mice. Aging Cell 2024:e14329. [PMID: 39239870 DOI: 10.1111/acel.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 09/07/2024] Open
Abstract
Salivary gland branching morphogenesis is regulated by the functional integration of neuronal signaling, but the underlying mechanisms are not fully understood in aging accelerated klotho-deficient (Kl-/-) mice. Here, we investigated whether the neuropeptides substance P (SP) and neuropeptide Y (NPY) affect the branching morphogenesis of embryonic salivary glands in aging Kl-/- mice. In the salivary glands of embryonic Kl-/- mice, morphological analysis and immunostaining revealed that epithelial bud formation, neuronal cell proliferation/differentiation, and the expression of the salivary gland functional marker ZO-1 were decreased in embryonic ductal cells. Incubation with SP/NPY at E12-E13d promoted branching morphogenesis, parasympathetic innervation, and epithelial proliferation in salivary glands of embryonic Kl-/- mice. The ERK inhibitor U0126 specifically inhibited neuronal substance-induced epithelial bud formation in the embryonic salivary gland. RNA-seq profiling analysis revealed that the expression of fibroblast growth factors/fibroblast growth factors (FGFs/FGFRs) and their receptors was significantly regulated by SP/NPY treatment in the embryonic salivary gland (E15). The FGFR inhibitor BGJ389 inhibited new branching formation induced by SP and NPY treatment and ERK1/2 expression. These results showed that aging may affect virtually the development of salivary gland by neuronal dysfunction. The neuropeptides SP/NPY induced embryonic salivary gland development through FGF/FGFR/ERK1/2-mediated signaling.
Collapse
Affiliation(s)
- Nguyen Khanh Toan
- Department of Pathology, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Soo-A Kim
- Department of Biochemistry, School of Oriental Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Patel VN, Aure MH, Choi SH, Ball JR, Lane ED, Wang Z, Xu Y, Zheng C, Liu X, Martin D, Pailin JY, Prochazkova M, Kulkarni AB, van Kuppevelt TH, Ambudkar IS, Liu J, Hoffman MP. Specific 3-O-sulfated heparan sulfate domains regulate salivary gland basement membrane metabolism and epithelial differentiation. Nat Commun 2024; 15:7584. [PMID: 39217171 PMCID: PMC11365954 DOI: 10.1038/s41467-024-51862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Heparan sulfate (HS) regulation of FGFR function, which is essential for salivary gland (SG) development, is determined by the immense structural diversity of sulfated HS domains. 3-O-sulfotransferases generate highly 3-O-sulfated HS domains (3-O-HS), and Hs3st3a1 and Hs3st3b1 are enriched in myoepithelial cells (MECs) that produce basement membrane (BM) and are a growth factor signaling hub. Hs3st3a1;Hs3st3b1 double-knockout (DKO) mice generated to investigate 3-O-HS regulation of MEC function and growth factor signaling show loss of specific highly 3-O-HS and increased FGF/FGFR complex binding to HS. During development, this increases FGFR-, BM- and MEC-related gene expression, while in adult, it reduces MECs, increases BM and disrupts acinar polarity, resulting in salivary hypofunction. Defined 3-O-HS added to FGFR pulldown assays and primary organ cultures modulates FGFR signaling to regulate MEC BM synthesis, which is critical for secretory unit homeostasis and acinar function. Understanding how sulfated HS regulates development will inform the use of HS mimetics in organ regeneration.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Sophie H Choi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - James R Ball
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ethan D Lane
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Glycan Therapeutics Corp, Raleigh, NC, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Changyu Zheng
- Translational Research Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Xibao Liu
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Daniel Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Jillian Y Pailin
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Indu S Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| |
Collapse
|
4
|
Khamdi S, Matangkasombut O, Lam-Ubol A. Non-pharmacologic interventions for management of radiation-induced dry mouth: A systematic review. Oral Dis 2024; 30:2876-2893. [PMID: 37946598 DOI: 10.1111/odi.14804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES Radiation-induced dry mouth negatively impacts patients' oral health and quality of life. Currently, evidence-based recommendation for non-pharmacologic interventions is still lacking. This study aimed to systematically review clinical trials evaluating the efficacy of non-pharmacologic interventions in cancer patients with radiation-induced dry mouth. METHODS Randomized controlled trials from 2000 were searched from 4 databases, including MEDLINE, Cochrane, Embase via OVID, and SCOPUS, up to December 16th, 2022 (PROSPERO registration CRD42022378405). The risk of bias was assessed using the revised Cochrane risk of bias assessment tool. RESULTS Twenty-one studies were included: 11 on artificial saliva, 4 on electrical nerve stimulation (TENS), 2 on acupuncture, and one study each on low-level laser therapy, stem cells, chewing gum, and probiotics. Overall bias was low, medium, and high in 33%, 48%, and 19% of the studies, respectively. Certain artificial saliva products and TENS were shown to improve dry mouth symptoms and salivary flow rate (SFR). One study showed that stem cell transplantation significantly increased SFR. CONCLUSIONS The evidence suggested that certain artificial saliva products and TENS are promising management. However, the evidence was still limited due to heterogeneity of interventions and outcome measurements. Thus, future studies using standard measurements and long-term follow-up are warranted.
Collapse
Affiliation(s)
- Sukontha Khamdi
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Aroonwan Lam-Ubol
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
5
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
6
|
Nelson DA, Kazanjian I, Melendez JA, Larsen M. Senescence and fibrosis in salivary gland aging and disease. J Oral Biol Craniofac Res 2024; 14:231-237. [PMID: 38516126 PMCID: PMC10951459 DOI: 10.1016/j.jobcr.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/07/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Salivary gland hypofunction is highly prevalent in aged and diseased individuals leading to significant discomfort and morbidity. One factor that contributes to salivary gland hypofunction is cellular aging, or senescence. Senescent cells can impair gland function by secreting paracrine-acting growth factors and cytokines, known as senescence-associated secretory phenotype (SASP) factors. These SASP factors stimulate inflammation, propagate the senescent phenotype through the bystander effect, and stimulate fibrosis. As senotherapeutics that target senescent cells have shown effectiveness in limiting disease manifestations in other conditions, there is interest in the use of these drugs to treat salivary gland hypofunction. In this review, we highlight the contribution of senescence and fibrosis to salivary gland pathologies. We also discuss therapeutic approaches to eliminate or modulate the senescent SASP phenotype for treating age-related salivary gland diseases and extending health span.
Collapse
Affiliation(s)
- Deirdre A. Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Isabella Kazanjian
- Department of Educational Theory and Practice, University at Albany, State University of New York, Albany, NY, USA
| | - J. Andres Melendez
- College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
7
|
Kollampally SCR, Zhang X, Moskwa N, Nelson DA, Sharfstein ST, Larsen M, Xie Y. Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance. Bioengineering (Basel) 2024; 11:375. [PMID: 38671796 PMCID: PMC11048715 DOI: 10.3390/bioengineering11040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have displayed potential in regenerating organ function due to their anti-fibrotic, anti-inflammatory, and regenerative properties. However, there is a need for delivery systems to enhance MSC retention while maintaining their anti-fibrotic characteristics. This study investigates the feasibility of using alginate hydrogel microstrands as a cell delivery vehicle to maintain MSC viability and phenotype. To accommodate cell implantation needs, we invented a Syringe-in-Syringe approach to reproducibly fabricate microstrands in small numbers with a diameter of around 200 µm and a porous structure, which would allow for transporting nutrients to cells by diffusion. Using murine NIH 3T3 fibroblasts and primary embryonic 16 (E16) salivary mesenchyme cells as primary stromal cell models, we assessed cell viability, growth, and expression of mesenchymal and fibrotic markers in microstrands. Cell viability remained higher than 90% for both cell types. To determine cell number within the microstrands prior to in vivo implantation, we have further optimized the alamarBlue assay to measure viable cell growth in microstrands. We have shown the effect of initial cell seeding density and culture period on cell viability and growth to accommodate future stromal cell delivery and implantation. Additionally, we confirmed homeostatic phenotype maintenance for E16 mesenchyme cells in microstrands.
Collapse
Affiliation(s)
- Sujith Chander Reddy Kollampally
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Xulang Zhang
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
- The Jackson Laboratory of Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| |
Collapse
|
8
|
Song EAC, Chung SH, Kim JH. Molecular mechanisms of saliva secretion and hyposecretion. Eur J Oral Sci 2024; 132:e12969. [PMID: 38192116 DOI: 10.1111/eos.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
The exocrine salivary gland secretes saliva, a fundamental body component to maintain oral homeostasis. Saliva is composed of water, ions, and proteins such as amylase, mucins, and immunoglobulins that play essential roles in the digestion of food, lubrication, and prevention of dental caries and periodontitis. An increasing number of people experience saliva hyposecretion due to aging, medications, Sjögren's syndrome, and radiation therapy for head and neck cancer. However, current treatments are mostly limited to temporary symptomatic relief. This review explores the molecular mechanisms underlying saliva secretion and hyposecretion to provide insight into putative therapeutic targets for treatment. Proteins implicated in saliva secretion pathways, including Ca2+ -signaling proteins, aquaporins, soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and tight junctions, are aberrantly expressed and localized in patients with saliva hyposecretion, such as Sjögren's syndrome. Analysis of studies on the mechanisms of saliva secretion and hyposecretion suggests that crosstalk between fluid and protein secretory pathways via Ca2+ /protein kinase C and cAMP/protein kinase A regulates saliva secretion. Impaired crosstalk between the two secretory pathways may contribute to saliva hyposecretion. Future research into the detailed regulatory mechanisms of saliva secretion and hyposecretion may provide information to define novel targets and generate therapeutic strategies for saliva hyposecretion.
Collapse
Affiliation(s)
- Eun-Ah Christine Song
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Sul-Hee Chung
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Hee Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Department of KHU-KIST Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Kaibori Y, Tamoto S, Okuda S, Matsuo K, Nakayama T, Nagakubo D. CCL28: A Promising Biomarker for Assessing Salivary Gland Functionality and Maintaining Healthy Oral Environments. BIOLOGY 2024; 13:147. [PMID: 38534417 DOI: 10.3390/biology13030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The oral cavity serves as the primary path through which substances from the outside world enter our body. Therefore, it functions as a critical component of host defense. Saliva is essential for maintaining a stable oral environment by catching harmful agents, including pathogens, allergens, and chemicals, in the air or food. CCL28, highly expressed in mucosal tissues, such as the colon and salivary glands, is a chemokine that attracts CCR10/CCR3 expressing cells. However, the role of CCL28 in salivary gland formation remains unclear. In this study, we investigated the salivary gland structure in CCL28-deficient mice. Histological analysis showed decreased staining intensity of Alcian blue, which detects acidic mucous, reduced expression of MUC2, and higher infiltration of gram-positive bacteria in the salivary glands of CCL28-deficient mice. In addition, CCL28-deficient mice contained ectopically MUC2-expressed cells in the ducts and reduced the expression of cytokeratin 18, a marker for ductal cells, within the submandibular glands, resulting in decreased duct numbers. Additionally, the submandibular glands of CCL28-deficient mice showed reduced expression of several stem cell markers. These results suggest that CCL28 regulates saliva production via proper differentiation of salivary gland stem cells and could be a valuable biomarker of salivary gland function.
Collapse
Affiliation(s)
- Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata-shi 573-0101, Osaka, Japan
| | - Saho Tamoto
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Sayoko Okuda
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Osaka, Japan
| | - Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| |
Collapse
|
10
|
Liu J, Li Y, Zhang Y, Cheng Q, Liu H, He L, Chen L, Zhao T, Liang P, Luo W. Single-Cell RNA-Seq Analysis Identifies Angiotensinogen and Galanin as Unique Molecular Markers of Acinar Cells in Murine Salivary Glands. Stem Cells Dev 2023; 32:758-767. [PMID: 37823745 DOI: 10.1089/scd.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that Agt is a specific marker of SMG serous acinar cells, whereas Gal is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that Agt and Gal represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.
Collapse
Affiliation(s)
- Jingming Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huikai Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Liwen He
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liang Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Animal Ceter, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Kim S, Kim JM, Jeon EJ, Kim JW, Choi ME, Park JM, Choi JS. Supernatant of activated platelet-rich plasma rejuvenated aging-induced hyposalivation in mouse. Sci Rep 2023; 13:21242. [PMID: 38040732 PMCID: PMC10692196 DOI: 10.1038/s41598-023-46878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023] Open
Abstract
Hyposalivation is a common complaint among the elderly, but no established treatment prevents age-induced hyposalivation. Platelet derivatives such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and plasma rich in growth factor (PRGF), are used widely in different areas of regenerative medicine to enhance the wound healing processes. This study examined whether the local injection of the supernatant of activated PRP (saPRP) into the salivary gland (SG) could help prevent aging-induced SG dysfunction and explored the mechanisms responsible for the protective effects on the SG hypofunction. The platelets were separated from the blood of male SD rats (220 ± 20 g). saPRP was manufactured by removing the fibrin clot after activating platelet with calcium ionophore 10 μM (A23187). The total protein and TGF-β1 levels were significantly higher in saPRP than in PRP. Human salivary gland epithelial cell(hSGEC) was treated with saPRP or PRP after senescence through irradiation. The significant proliferation of hSGEC was observed in saPRP treated group compared to irradiation only group and irradiation + PRP group. Cellular senescence, apoptosis, and inflammation significantly reduced in saPRP group. The SG function and structural tissue remodeling by the saPRP were investigated with naturally aged mice. The mice were divided into three groups: 3 months old (3 M), 22 months old (22 M), and 22 months old treated with saPRP (22 M + saPRP). Salivary flow rate and lag time were significantly improved in 22 M + saPRP group compared to 22 M group. The histologic examinations showed the significant proliferation of acinar cell in 22 M + saPRP group. The decrease of senescence, apoptosis, and inflammation observed by western blot in 22 M + saPRP group. The saPRP induced the proliferation of hSGECs, leading to a significant decrease in cellular senescence via decrease inflammation and apoptosis, in vitro. Moreover, the acini cells of the salivary gland were regenerated, and the salivary function increased in aged mice. These results showed that saPRP could be a treatment agent against aging-induced SG dysfunction.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Jeong Mi Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, 100 Inharo, Michuholgu, Incheon, 22212, Republic of Korea
| | - Eun Jeong Jeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, 100 Inharo, Michuholgu, Incheon, 22212, Republic of Korea
| | - Ji Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Mi Eun Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Jin-Mi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea.
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, 100 Inharo, Michuholgu, Incheon, 22212, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, 100 Inharo, Michuholgu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
12
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
13
|
Aure MH, Symonds JM, Villapudua CU, Dodge JT, Werner S, Knosp WM, Hoffman MP. FGFR2 is essential for salivary gland duct homeostasis and MAPK-dependent seromucous acinar cell differentiation. Nat Commun 2023; 14:6485. [PMID: 37838739 PMCID: PMC10576811 DOI: 10.1038/s41467-023-42243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Exocrine acinar cells in salivary glands (SG) are critical for oral health and loss of functional acinar cells is a major clinical challenge. Fibroblast growth factor receptors (FGFR) are essential for early development of multiple organs, including SG. However, the role of FGFR signaling in specific populations later in development and during acinar differentiation are unknown. Here, we use scRNAseq and conditional deletion of murine FGFRs in vivo to identify essential roles for FGFRs in craniofacial, early SG development and progenitor function during duct homeostasis. Importantly, we also discover that FGFR2 via MAPK signaling is critical for seromucous acinar differentiation and secretory gene expression, while FGFR1 is dispensable. We show that FGF7, expressed by myoepithelial cells (MEC), activates the FGFR2-dependent seromucous transcriptional program. Here, we propose a model where MEC-derived FGF7 drives seromucous acinar differentiation, providing a rationale for targeting FGFR2 signaling in regenerative therapies to restore acinar function.
Collapse
Affiliation(s)
- Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Jennifer M Symonds
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Carlos U Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Joshua T Dodge
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Zurich, Switzerland
| | - Wendy M Knosp
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Westwood L, Emmerson E, Callanan A. Fabrication of polycaprolactone electrospun fibres with retinyl acetate for antioxidant delivery in a ROS-mimicking environment. Front Bioeng Biotechnol 2023; 11:1233801. [PMID: 37650040 PMCID: PMC10463743 DOI: 10.3389/fbioe.2023.1233801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background: Increased cancer rates denote that one in two people will be diagnosed with cancer in their lifetime. Over 60% of cancer patients receive radiotherapy, either as a stand-alone treatment or in combination with other treatments such as chemotherapy and surgery. Whilst radiotherapy is effective in destroying cancer cells, it also causes subsequent damage to healthy cells and surrounding tissue due to alterations in the tumor microenvironment and an increase in reactive oxygen species (ROS). This can cause extensive damage that impairs tissue function, and the likelihood of tissue regeneration and restoration of function is significantly reduced as new healthy cells cannot survive in the damaged environment. In the treatment of head and neck cancers, radiotherapy can cause salivary gland dysfunction. This significantly impairs the patient's quality of life and there is currently no cure, only palliative treatment options. Tissue engineering approaches are used to mimic the microenvironment of the tissue and can mediate the damaged microenvironment via bioactive compounds, to support the delivery, survival, and proliferation of new, healthy cells into the damaged environment. Methods: In this study, retinyl acetate, a derivative of vitamin A, was successfully incorporated into electrospun polycaprolactone fibres. Results: SEM images and characterization analyses showed that all scaffolds produced had similar characteristics, including fiber morphology and scaffold wettability. The vitamin scaffolds were shown to exert an antioxidant effect through scavenging activity of both DPPH and hydroxyl radicals in vitro. Critically, the antioxidant scaffolds supported the growth of human submandibular gland cells and significantly upregulated the expression of GPx1, an antioxidant enzyme, when cultured under both normal conditions and under a simulated oxidative stress environment. Discussion: These results suggest that incorporation of retinyl acetate into electrospun fibres has may mediate the damaged microenvironment post cancer radiation therapy.
Collapse
Affiliation(s)
- Lorna Westwood
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh, United Kingdom
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Nathan CAO, Asarkar AA, Entezami P, Corry J, Strojan P, Poorten VV, Makitie A, Eisbruch A, Robbins KT, Smee R, St John M, Chiesa-Estomba C, Winter SC, Beitler JJ, Ferlito A. Current management of xerostomia in head and neck cancer patients. Am J Otolaryngol 2023; 44:103867. [PMID: 36996514 DOI: 10.1016/j.amjoto.2023.103867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Radiotherapy (RT) continues to play a key role in the management of head and neck cancer (HNC). Xerostomia remains a principal detriment to the quality of life (QoL) for 80 % of surviving patients receiving head and neck radiation. Radiation-induced injury to the salivary glands is dose-dependent, and thus efforts have been focused on decreasing radiation to the salivary glands. Decreased saliva production reduces both short-term and long-term quality of life in head and neck survivors by impacting on taste and contributing to dysphagia. Several radioprotective agents to the salivary gland have been investigated. Although not widely practiced, surgical transfer of the submandibular gland prior to RT is the mainstay of surgical options in preventing xerostomia. This review focuses on the strategies to improve xerostomia following radiation therapy in head and neck cancers.
Collapse
Affiliation(s)
- Cherie-Ann O Nathan
- Department of Otolaryngology/Head and Neck Surgery, LSU Health Sciences Center, Shreveport, LA, USA; Otolaryngology Section, Surgical Service, Overton Brooks VA Medical Center, Shreveport, LA, USA.
| | - Ameya A Asarkar
- Department of Otolaryngology/Head and Neck Surgery, LSU Health Sciences Center, Shreveport, LA, USA
| | - Payam Entezami
- Department of Otolaryngology/Head and Neck Surgery, LSU Health Sciences Center, Shreveport, LA, USA; Otolaryngology Section, Surgical Service, Overton Brooks VA Medical Center, Shreveport, LA, USA
| | - June Corry
- Department of Radiation Oncology, Genesiscare St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Primoz Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, Section Head and Neck Oncology, KU Leuven, Leuven, Belgium
| | - Antti Makitie
- Department of Otorhinolaryngology, Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - K T Robbins
- Department of Otolaryngology/Head and Neck Surgery, Southern Illinois University, School of Medicine, Springfield, IL, USA
| | - Robert Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Sydney, NSW, Australia
| | - Maie St John
- Department of Otolaryngology/Head and Neck Surgery, UCLA, CA, USA
| | - Carlos Chiesa-Estomba
- Otorhinolaryngology - Head & Neck Department - Donostia University Hospital, Biodonostia Research Institute, Deusto University, Spain
| | - Stuart C Winter
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
16
|
Dodds MWJ, Haddou MB, Day JEL. The effect of gum chewing on xerostomia and salivary flow rate in elderly and medically compromised subjects: a systematic review and meta-analysis. BMC Oral Health 2023; 23:406. [PMID: 37340436 DOI: 10.1186/s12903-023-03084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Xerostomia negatively affects quality of life. Symptoms include oral dryness; thirst; difficulty speaking, chewing, and swallowing food; oral discomfort; mouth soft tissue soreness and infections; and rampant tooth decay. The objective of this systematic review and meta-analysis was to investigate if gum chewing is an intervention that results in objective improvements in salivary flow rates and subjective relief from xerostomia. METHOD We searched electronic databases including Medline, Scopus, Web of Science, Embase, Cochrane Library (CDSR and Central), Google Scholar and the citations of review papers (last searched 31/03/23). The study populations included: 1) elderly people with xerostomia (> 60 years old, any gender, and severity of xerostomia), and 2) medically compromised people with xerostomia. The intervention of interest was gum chewing. Comparisons included gum chewing vs. no gum chewing. The outcomes included salivary flow rate, self-reported xerostomia, and thirst. All settings and study designs were included. We conducted a meta-analysis on studies where measurements of unstimulated whole salivary flow rate for both a gum chewing, and no gum chewing intervention (daily chewing of gum for two weeks or longer) were reported. We assessed risk of bias using Cochrane's RoB 2 and ROBINS-I tools. RESULTS Nine thousand six hundred and two studies were screened and 0.26% (n = 25) met the inclusion criteria for the systematic review. Two of the 25 papers had a high overall risk of bias. Of the 25 papers selected for the systematic review, six met the criteria to be included in the meta-analysis which confirmed a significant overall effect of gum on saliva flow outcomes compared to control (SMD = 0.44, 95% CI: 0.22-0.66; p = 0.00008; I2 = 46.53%). CONCLUSIONS Chewing gum can increase unstimulated salivary flow rate in elderly and medically compromised people with xerostomia. Increasing the number of days over which gum is chewed increases the improvement in the rate of salivation. Gum chewing is linked with improvements in self-reported levels of xerostomia (although it is noted that no significant effects were detected in five of the studies reviewed). Future studies should eliminate sources of bias, standardise methods to measure salivary flow rate, and use a common instrument to measure subjective relief from xerostomia. STUDY REGISTRATION PROSPERO CRD42021254485.
Collapse
Affiliation(s)
| | | | - Jon E L Day
- Cerebrus Associates, The White House, 2 Meadrow, Godalming, GU7 3HN, Surrey, UK
| |
Collapse
|
17
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Autologous mesenchymal stem cells offer a new paradigm for salivary gland regeneration. Int J Oral Sci 2023; 15:18. [PMID: 37165024 PMCID: PMC10172302 DOI: 10.1038/s41368-023-00224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023] Open
Abstract
Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
18
|
Kim YJ. Xerostomia and Its Cellular Targets. Int J Mol Sci 2023; 24:ijms24065358. [PMID: 36982432 PMCID: PMC10049126 DOI: 10.3390/ijms24065358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Xerostomia, the subjective feeling of a dry mouth associated with dysfunction of the salivary glands, is mainly caused by radiation and chemotherapy, various systemic and autoimmune diseases, and drugs. As saliva plays numerous essential roles in oral and systemic health, xerostomia significantly reduces quality of life, but its prevalence is increasing. Salivation mainly depends on parasympathetic and sympathetic nerves, and the salivary glands responsible for this secretion move fluid unidirectionally through structural features such as the polarity of acinar cells. Saliva secretion is initiated by the binding of released neurotransmitters from nerves to specific G-protein-coupled receptors (GPCRs) on acinar cells. This signal induces two intracellular calcium (Ca2+) pathways (Ca2+ release from the endoplasmic reticulum and Ca2+ influx across the plasma membrane), and this increased intracellular Ca2+ concentration ([Ca2+]i) causes the translocation of the water channel aquaporin 5 (AQP5) to the apical membrane. Consequently, the GPCR-mediated increased [Ca2+]i in acinar cells promotes saliva secretion, and this saliva moves into the oral cavity through the ducts. In this review, we seek to elucidate the potential of GPCRs, the inositol 1,4,5-trisphosphate receptor (IP3R), store-operated Ca2+ entry (SOCE), and AQP5, which are essential for salivation, as cellular targets in the etiology of xerostomia.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| |
Collapse
|
19
|
Involvement of aquaporin 5 in Sjögren's syndrome. Autoimmun Rev 2023; 22:103268. [PMID: 36621535 DOI: 10.1016/j.autrev.2023.103268] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with the pathological hallmark of lymphoplasmacytic infiltration of exocrine glands - more specifically salivary and lacrimal glands - resulting in a diminished production of tears and saliva (sicca syndrome). The pathophysiology underscoring the mechanisms of the sicca symptoms in SS has still yet to be unraveled but recent advances have identified a cardinal role of aquaporin-5 (AQP5) as a key player in saliva secretion as well as salivary gland epithelial cell dysregulation. AQP5 expression and localization are significantly altered in salivary glands from patients and mice models of the disease, shedding light on a putative mechanism accounting for diminished salivary flow. Furthermore, aberrant expression and localization of AQP5 protein partners, such as prolactin-inducible protein and ezrin, may account for altered AQP5 localization in salivary glands from patients suffering from SS and are considered as new players in SS development. This review provides an overview of the role of AQP5 in SS salivary gland epithelial cell dysregulation, focusing on its trafficking and protein-protein interactions.
Collapse
|
20
|
Kano F, Hashimoto N, Liu Y, Xia L, Nishihara T, Oki W, Kawarabayashi K, Mizusawa N, Aota K, Sakai T, Azuma M, Hibi H, Iwasaki T, Iwamoto T, Horimai N, Yamamoto A. Therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for radiation-induced mouse xerostomia. Sci Rep 2023; 13:2706. [PMID: 36792628 PMCID: PMC9932159 DOI: 10.1038/s41598-023-29176-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Radiation therapy for head and neck cancers is frequently associated with adverse effects on the surrounding normal tissue. Irreversible damage to radiation-sensitive acinar cells in the salivary gland (SG) causes severe radiation-induced xerostomia (RIX). Currently, there are no effective drugs for treating RIX. We investigated the efficacy of treatment with conditioned medium derived from stem cells from human exfoliated deciduous teeth (SHED-CM) in a mouse RIX model. Intravenous administration of SHED-CM, but not fibroblast-CM (Fibro-CM), prevented radiation-induced cutaneous ulcer formation (p < 0.0001) and maintained SG function (p < 0.0001). SHED-CM treatment enhanced the expression of multiple antioxidant genes in mouse RIX and human acinar cells and strongly suppressed radiation-induced oxidative stress. The therapeutic effects of SHED-CM were abolished by the superoxide dismutase inhibitor diethyldithiocarbamate (p < 0.0001). Notably, quantitative liquid chromatography-tandem mass spectrometry shotgun proteomics of SHED-CM and Fibro-CM identified eight proteins activating the endogenous antioxidant system, which were more abundant in SHED-CM than in Fibro-CM (p < 0.0001). Neutralizing antibodies against those activators reduced antioxidant activity of SHED-CM (anti-PDGF-D; p = 0.0001, anti-HGF; p = 0.003). Our results suggest that SHED-CM may provide substantial therapeutic benefits for RIX primarily through the activation of multiple antioxidant enzyme genes in the target tissue.
Collapse
Affiliation(s)
- Fumiya Kano
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Noboru Hashimoto
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Yao Liu
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Linze Xia
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Takaaki Nishihara
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Wakana Oki
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Keita Kawarabayashi
- grid.267335.60000 0001 1092 3579Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Noriko Mizusawa
- grid.267335.60000 0001 1092 3579Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiko Aota
- grid.267335.60000 0001 1092 3579Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayoshi Sakai
- grid.136593.b0000 0004 0373 3971Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masayuki Azuma
- grid.267335.60000 0001 1092 3579Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hideharu Hibi
- grid.27476.300000 0001 0943 978XDepartment of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Iwasaki
- grid.267335.60000 0001 1092 3579Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tsutomu Iwamoto
- grid.265073.50000 0001 1014 9130Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Akihito Yamamoto
- Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan.
| |
Collapse
|
21
|
Guo X, Hou L, Peng X, Tang F. The prevalence of xerostomia among e-cigarette or combustible tobacco users: A systematic review and meta-analysis. Tob Induc Dis 2023; 21:22. [PMID: 36777290 PMCID: PMC9909684 DOI: 10.18332/tid/156676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION This study aims to evaluate the prevalence of xerostomia in a healthy population with e-cigarettes and/or combustible tobacco. METHODS The following electronic databases were searched: Web of Science, Chinese Biomedical Literature Database (CBM), PubMed, Cochrane Library, Embase, Chinese National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), and Wan-Fang Database, from 1 January 2000 to 20 October 2022. The language was limited to Chinese and English. The data were analyzed using Stata 15.0, and the prevalence of xerostomia in different smokers is reported. RESULTS A total of 14 studies were included, with a total sample size of 6827 cases. The overall prevalence of xerostomia was 26% (95% CI: 18-35). In the combustible tobacco population, the prevalence of xerostomia was 24% (95% CI: 21-17), while among e-cigarette users it was 33% (95% CI: 18-48). CONCLUSIONS Current evidence suggests that the prevalence of xerostomia is high in healthy smoking populations. These findings are restricted by the number and quality of the included studies and need to be validated by additional high-quality studies.
Collapse
Affiliation(s)
- Xingtong Guo
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lili Hou
- Nursing Department, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuepei Peng
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fuyou Tang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Kaibori Y, Yamashita K, Nagakubo D. The altered production and property of saliva induced by ingesting fermented food ingredients affect the oral microbiome composition in mice. Biosci Biotechnol Biochem 2023; 87:228-235. [PMID: 36398739 DOI: 10.1093/bbb/zbac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Oral functions are diverse and critical to human health. Therefore, insufficient secretion or poor quality of saliva, which is secreted into the oral cavity and plays various roles, could have a crucial influence on the oral microenvironment and be associated with systemic disease development. Here, we investigated the effects of food ingredients on saliva quantity and quality, including fermented ones. Through the in vitro submandibular glands' organ culture analyses, we found that "Yomo gyutto," fermented Japanese mugwort (Artemisia princeps), altered the expression of aquaporin-5, a water channel protein. We also found that Yomo gyutto increased saliva volume, along with the amount of α-amylase in mice, and caused changes in the oral microbiome composition of mice. These results suggested that by ingesting Yomo gyutto, we could directly and effectively manipulate the quantity and quality of saliva secreted from the salivary glands, potentially altering the oral microbiome composition for individual health.
Collapse
Affiliation(s)
- Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Kazuhiko Yamashita
- Functional Food Ingredients R&D Division, Yaegaki Biotechnology, Inc., Himeji, Hyogo, Japan
| | - Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| |
Collapse
|
23
|
Chatzeli L, Bordeu I, Han S, Bisetto S, Waheed Z, Koo BK, Alcolea MP, Simons BD. A cellular hierarchy of Notch and Kras signaling controls cell fate specification in the developing mouse salivary gland. Dev Cell 2023; 58:94-109.e6. [PMID: 36693323 PMCID: PMC7614884 DOI: 10.1016/j.devcel.2022.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
The development of the mouse salivary gland involves a tip-driven process of branching morphogenesis that takes place in concert with differentiation into acinar, myoepithelial, and ductal (basal and luminal) sub-lineages. By combining clonal lineage tracing with a three-dimensional (3D) reconstruction of the branched epithelial network and single-cell RNA-seq analysis, we show that in tips, a heterogeneous population of renewing progenitors transition from a Krt14+ multipotent state to unipotent states via two transcriptionally distinct bipotent states, one restricted to the Krt14+ basal and myoepithelial lineage and the other to the Krt8+ acinar and luminal lineage. Using genetic perturbations, we show how the differential expression of Notch signaling correlates with spatial segregation, exits from multipotency, and promotes the Krt8+ lineage, whereas Kras activation promotes proacinar fate. These findings provide a mechanistic basis for how positional cues within growing tips regulate the process of lineage segregation and ductal patterning.
Collapse
Affiliation(s)
- Lemonia Chatzeli
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Ignacio Bordeu
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415 Santiago, Chile
| | - Seungmin Han
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sara Bisetto
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Zahra Waheed
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon 34126, Republic of Korea
| | - Maria P Alcolea
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Oncology, The Hutchison Building, Box 197 Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Benjamin D Simons
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.
| |
Collapse
|
24
|
Niemczyk S, Niemczyk W, Prokurat M, Grudnik K, Kuleszyński M, Niciejewska E, Lau K, Kasperczyk J. IMPACT OF E-CIGARETTES ON THE ORAL HEALTH - LITERATURE REVIEW. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:271-275. [PMID: 37589115 DOI: 10.36740/merkur202303115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
E-cigarettes are electronic devices used to inhale aerosols generated from the vaporization of flavored liquids. Nowadays, the use of e-cigarettes has become one of the most popular alternatives to traditional smoking. The wide variety of devices and liquids makes it challenging to assess the health effects of using e-cigarettes. During the vaporization of e-liquids, toxins, carcinogens, and various other chemicals can be released and inhaled by the user. Limited data exist regarding the potential health impact of exposure to e-vapors, primarily derived from animal studies and in vitro research. The oral tissues are the first site of direct interaction with the components of the inhaled vapor. While e-cigarettes are commonly portrayed as safer alternatives to tobacco cigarettes, little is known about the short- or long-term health effects of their use. The aim of this review is to briefly present the available data regarding the impact of chemical ingredients and toxins present in e-cigarette vapors on oral cavity cells.
Collapse
Affiliation(s)
- Stanisław Niemczyk
- STUDENT SCIENTIFIC CIRCLE AT THE DEPARTMENT OF ENVIRONMENTAL MEDICINE AND EPIDEMIOLOGY IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, FACULTY OF MEDICAL SCIENCES IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, ZABRZE, POLAND
| | - Wojciech Niemczyk
- STUDENT SCIENTIFIC CIRCLE AT THE DEPARTMENT OF ENVIRONMENTAL MEDICINE AND EPIDEMIOLOGY IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, FACULTY OF MEDICAL SCIENCES IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, ZABRZE, POLAND
| | - Monika Prokurat
- STUDENT SCIENTIFIC CIRCLE AT THE DEPARTMENT OF ENVIRONMENTAL MEDICINE AND EPIDEMIOLOGY IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, FACULTY OF MEDICAL SCIENCES IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, ZABRZE, POLAND
| | - Katarzyna Grudnik
- STUDENT SCIENTIFIC CIRCLE AT THE DEPARTMENT OF ENVIRONMENTAL MEDICINE AND EPIDEMIOLOGY IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, FACULTY OF MEDICAL SCIENCES IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, ZABRZE, POLAND
| | - Mikołaj Kuleszyński
- STUDENT SCIENTIFIC CIRCLE AT THE DEPARTMENT OF ENVIRONMENTAL MEDICINE AND EPIDEMIOLOGY IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, FACULTY OF MEDICAL SCIENCES IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, ZABRZE, POLAND
| | - Ewelina Niciejewska
- STUDENT SCIENTIFIC CIRCLE AT THE DEPARTMENT OF ENVIRONMENTAL MEDICINE AND EPIDEMIOLOGY IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, FACULTY OF MEDICAL SCIENCES IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, ZABRZE, POLAND
| | - Karolina Lau
- DEPARTMENT OF ENVIRONMENTAL MEDICINE AND EPIDEMIOLOGY IN ZABRZE, FACULTY OF MEDICAL SCIENCES IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, ZABRZE, POLAND
| | - Janusz Kasperczyk
- DEPARTMENT OF ENVIRONMENTAL MEDICINE AND EPIDEMIOLOGY IN ZABRZE, FACULTY OF MEDICAL SCIENCES IN ZABRZE, SILESIAN MEDICAL UNIVERSITY IN KATOWICE, ZABRZE, POLAND
| |
Collapse
|
25
|
Immunomodulating Hydrogels as Stealth Platform for Drug Delivery Applications. Pharmaceutics 2022; 14:pharmaceutics14102244. [PMID: 36297679 PMCID: PMC9610165 DOI: 10.3390/pharmaceutics14102244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation. This review discusses the aspects of hydrogel-based systems used as drug delivery platforms for various diseases. A detailed investigation on different immunomodulation strategies for various delivery options and deliberate upon the outlook of such drug delivery platforms are conducted.
Collapse
|
26
|
Zhao L, Xu J, Li S, Li B, Jia M, Pang B, Cui H. Resveratrol alleviates salivary gland dysfunction induced by ovariectomy in rats. Biochem Biophys Res Commun 2022; 630:112-117. [PMID: 36155056 DOI: 10.1016/j.bbrc.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Resveratrol (Res), found abundant in many medicinal plants, exerts multiple biological functions in the body, including anti-inflammatory, antioxidant, and anti-aging properties. Xerostomia is a major symptom of salivary gland dysfunction in menopausal women, which significantly compromises the quality of life. Here, we investigated the effect of Res on estrogen deficiency-induced salivary gland dysfunction in rats. We found that Res administration could reduce body weight and water consumption, and increase salivary fluid secretion and blood flow of the submandibular gland. Furthermore, Res therapy alleviated histological lesions, increased AQP5 expression, and inhibited cell apoptosis in submandibular gland tissue. Meanwhile, the action of antioxidants was restored and the levels of inflammatory cytokines were attenuated by Res supplementation. Collectively, Res effectively improved estrogen deficiency-induced hyposalivation, which may provide a novel, safe, and practical approach to protect the salivary glands of estrogen-deficient females against xerostomia.
Collapse
Affiliation(s)
- Lixian Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China; Sijing Hospital of Songjiang District, Shanghai, 201601, PR China
| | - Juan Xu
- Sijing Hospital of Songjiang District, Shanghai, 201601, PR China
| | - Song Li
- Affiliated Hospital of Hebei University, Baoding, 071100, PR China
| | - Boyue Li
- Affiliated Hospital of Hebei University, Baoding, 071100, PR China
| | - Muyun Jia
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China
| | - Baoxing Pang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China
| | - Hao Cui
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China; Sijing Hospital of Songjiang District, Shanghai, 201601, PR China.
| |
Collapse
|
27
|
Fowler EW, van Venrooy EJ, Witt RL, Jia X. A TGFβR inhibitor represses keratin-7 expression in 3D cultures of human salivary gland progenitor cells. Sci Rep 2022; 12:15008. [PMID: 36056161 PMCID: PMC9440137 DOI: 10.1038/s41598-022-19253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Salivary gland tissue engineering offers an attractive alternative for the treatment of radiation-induced xerostomia. Key to the success of this approach is the maintenance and expansion of secretory acinar cells in vitro. However, recent studies revealed that in vitro culture of primary salivary gland epithelial cells led to undesirable upregulation of the expression of keratin-7 (K7), a marker of ductal phenotype and frequently associated with cellular stress. We have previously shown that hyaluronic acid (HA)-based, RGDSP-decorated hydrogels support the 3D growth and assembly of primary human salivary gland stem/progenitor cells (hS/PCs). Here, we investigate whether the RGDSP culture also promotes K7 expression, and if so, what factors govern the K7 expression. Compared to hS/PCs maintained in blank HA gels, those grown in RGDSP cultures expressed a significantly higher level of K7. In other tissues, various transforming growth factor-β (TGF-β) superfamily members are reported to regulate K7 expression. Similarly, our immunoblot array and ELISA experiments confirmed the increased expression of TGF-β1 and growth/differentiation factor-15 (GDF-15) in RGDSP cultures. However, 2D model studies show that only TGF-β1 is required to induce K7 expression in hS/PCs. Immunocytochemical analysis of the intracellular effectors of TGF-β signaling, SMAD 2/3, further confirmed the elevated TGF-β signaling in RGDSP cultures. To maximize the regenerative potential of h/SPCs, cultures were treated with a pharmacological inhibitor of TGF-β receptor, A83-01. Our results show that A83-01 treatment can repress K7 expression not only in 3D RGDSP cultures but also under 2D conditions with exogenous TGF-β1. Collectively, we provide a link between TGF-β signaling and K7 expression in hS/PC cultures and demonstrate the effectiveness of TGF-β inhibition to repress K7 expression while maintaining the ability of RGDSP-conjugated HA gels to facilitate the rapid development of amylase expressing spheroids. These findings represent an important step towards regenerating salivary function with a tissue-engineered salivary gland.
Collapse
Affiliation(s)
- Eric W Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Emmett J van Venrooy
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Robert L Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE, 19713, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
28
|
Diagnosis, Prevention, and Treatment of Radiotherapy-Induced Xerostomia: A Review. JOURNAL OF ONCOLOGY 2022; 2022:7802334. [PMID: 36065305 PMCID: PMC9440825 DOI: 10.1155/2022/7802334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
In patients with head and neck cancer, irradiation (IR)-sensitive salivary gland (SG) tissue is highly prone to damage during radiotherapy (RT). This leads to SG hypofunction and xerostomia. Xerostomia is defined as the subjective complaint of dry mouth, which can cause other symptoms and adversely affect the quality of life. In recent years, diagnostic techniques have constantly improved with the emergence of more reliable and valid questionnaires as well as more accurate equipment for saliva flow rate measurement and imaging methods. Preventive measures such as the antioxidant MitoTEMPO, botulinum toxin (BoNT), and growth factors have been successfully applied in animal experiments, resulting in positive outcomes. Interventions, such as the new delivery methods of pilocarpine, edible saliva substitutes, acupuncture and electrical stimulation, gene transfer, and stem cell transplantation, have shown potential to alleviate or restore xerostomia in patients. The review summarizes the existing and new diagnostic methods for xerostomia, along with current and potential strategies for reducing IR-induced damage to SG function. We also aim to provide guidance on the advantages and disadvantages of the diagnostic methods. Additionally, most prevention and treatment methods remain in the stage of animal experiments, suggesting a need for further clinical research, among which we believe that antioxidants, gene transfer, and stem cell transplantation have broad prospects.
Collapse
|
29
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
31
|
Wang B, Li Z, Li J, Shao Q, Qin L. Sialin mediates submandibular gland regeneration ability by affecting polysialic acid synthesis. Oral Dis 2022. [PMID: 35593110 DOI: 10.1111/odi.14256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Sialin is a multifunctional molecule with a well-described role in physiological equilibrium regulation. The aim of this study was to elucidate the role of sialin in salivary glands regeneration. MATERIALS AND METHODS Submandibular gland duct ligation/deligation of rat was performed to develop a rat model of submandibular gland regeneration. Phenotype changes were investigated using western blotting and quantitative real-time polymerase chain reaction, as well as immunohistochemical staining. LV-slc17a5-RNAi vectors were injected into the submandibular glands via retroductal instillation to establish a stable sialin knockdown model. RESULTS Submandibular gland tissue structure could completely restore 28 days after duct deligation, when the duct had been ligated for 7 days. The expression of sialin, polysialic acid, and polysialyltransferase IV was significantly increased on day 0 after duct deligation, and it returned to the level of the control group at day 28. Moreover, sialin knockdown could weakened gland regeneration by reducing polysialic acid synthesis. Supplementing drinking water with polysialic acid precursors (ManNAc) in drinking water could partially rescue submandibular gland regeneration in sialin knockdown rats. CONCLUSION These data indicated that sialin was vital for submandibular gland regeneration which mediated the process of gland regeneration by affecting the polysialic acid synthesis.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhilin Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.,Department of Head and Neck Oncology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qi Shao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.,Department of Oral and Maxillofacial Surgery, Changsha Stomatological Hospital, You Yi Road No.389, Changsha, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Meng C, Huang S, Cheng T, Zhang X, Yan X. Induction of Salivary Gland-Like Tissue by Induced Pluripotent Stem Cells In Vitro. Tissue Eng Regen Med 2022; 19:389-401. [PMID: 35171451 PMCID: PMC8971325 DOI: 10.1007/s13770-021-00402-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate the in vitro induction of salivary gland-like tissue by ips cells in an interferon regulatory factor 6 (IRF6) overexpression and parotid conditioned medium environment. METHODS Urine-derived ips cells were isolated, identified, transfected with IRF6 and cultured in parotid conditioned medium to induce ips cells into salivary gland differentiation, morphological changes of ips cells were observed, CCK-8 was used to determine the cell proliferation efficiency and transcriptome sequencing was used to detect the expression of genes related to parotid gland formation. RESULTS Immunofluorescence staining showed that the isolated ips cells were positive for NANOG, SSEA4 and OCT4 and had embryonic-like stem cell characteristics; CCK-8 showed that there was no statistical difference in the proliferation efficiency between the IRF6+ induced group and the simple induced group after induction of ips cells into salivary glands. The results of transcriptome sequencing showed that there were a total of 643 differentially expressed genes, including 365 up-regulated genes and 278 down-regulated genes in the IRF6+ induced group compared to the blank control group, and the salivary gland related genes HAPLN1, CCL2, MSX2, ANXA1, CYP11A1, HES1 and LUM were all highly expressed in the IRF6+ induced group. CONCLUSION IRF6 promotes salivary gland differentiation in urine-derived iPSCs, and its mechanism of promoting differentiation may be that IRF6 upregulates the expression of HAPLN1, CCL2, MSX2, ANXA1, CYP11A1, HES1 and LUM to promote epithelial differentiation.
Collapse
Affiliation(s)
- Cen Meng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengyuan Huang
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Taiqi Cheng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xing Yan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Dai S, Wen Y, Luo P, Ma L, Liu Y, Ai J, Shi C. Therapeutic implications of exosomes in the treatment of radiation injury. BURNS & TRAUMA 2022; 10:tkab043. [PMID: 35071650 PMCID: PMC8778593 DOI: 10.1093/burnst/tkab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Radiotherapy is one of the main cancer treatments, but it may damage normal tissue and cause various side effects. At present, radioprotective agents used in clinics have side effects such as nausea, vomiting, diarrhea and hypotension, which limit their clinical application. It has been found that exosomes play an indispensable role in radiation injury. Exosomes are lipid bilayer vesicles that carry various bioactive substances, such as proteins, lipids and microRNA (miRNA), that play a key role in cell-to-cell communication and affect tissue injury and repair. In addition, studies have shown that radiation can increase the uptake of exosomes in cells and affect the composition and secretion of exosomes. Here, we review the existing studies and discuss the effects of radiation on exosomes and the role of exosomes in radiation injury, aiming to provide new insights for the treatment of radiation injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Junhua Ai
- Correspondence. Junhua Ai, ; Chunmeng Shi,
| | | |
Collapse
|
34
|
Alginate Hydrogel Microtubes for Salivary Gland Cell Organization and Cavitation. Bioengineering (Basel) 2022; 9:bioengineering9010038. [PMID: 35049747 PMCID: PMC8773299 DOI: 10.3390/bioengineering9010038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding the different regulatory functions of epithelial and mesenchymal cell types in salivary gland development and cellular organization is essential for proper organoid formation and salivary gland tissue regeneration. Here, we demonstrate a biocompatible platform using pre-formed alginate hydrogel microtubes to facilitate direct epithelial–mesenchymal cell interaction for 3D salivary gland cell organization, which allows for monitoring cellular organization while providing a protective barrier from cell-cluster loss during medium changes. Using mouse salivary gland ductal epithelial SIMS cells as the epithelial model cell type and NIH 3T3 fibroblasts or primary E16 salivary mesenchyme cells as the stromal model cell types, self-organization from epithelial–mesenchymal interaction was examined. We observed that epithelial and mesenchymal cells undergo aggregation on day 1, cavitation by day 4, and generation of an EpCAM-expressing epithelial cell layer as early as day 7 of the co-culture in hydrogel microtubes, demonstrating the utility of hydrogel microtubes to facilitate heterotypic cell–cell interactions to form cavitated organoids. Thus, pre-formed alginate microtubes are a promising co-culture method for further understanding epithelial and mesenchymal interaction during tissue morphogenesis and for future practical applications in regenerative medicine.
Collapse
|
35
|
Abstract
Salivary glands are exocrine glands composed of several cell types, including the ductal, acinar, and basal/myoepithelial cells. They play important roles in maintaining oral homeostasis and health. During early murine development, the salivary glands, which arise as epithelial buds, are produced from primitive oral epithelia through an interaction between the oral epithelium and mesenchyme.We recently reported that salivary gland organoids can be generated from mouse embryonic stem cells (ESCs). We recapitulated the process of embryonic salivary gland development using an organoid culture system. The mouse ESC-derived salivary gland organoids consisted of acinar-, ductal-, and myoepithelial-like cells. In this chapter, we describe a protocol for differentiating salivary gland organoids from ESCs .
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
| |
Collapse
|
36
|
Rocchi C, Cinat D, Serrano Martinez P, Bruin ALJD, Baanstra M, Brouwer U, Del Angel Zuivre C, Schepers H, van Os R, Barazzuol L, Coppes RP. The Hippo signaling pathway effector YAP promotes salivary gland regeneration after injury. Sci Signal 2021; 14:eabk0599. [PMID: 34874744 DOI: 10.1126/scisignal.abk0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cecilia Rocchi
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Anne L Jellema-de Bruin
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Uilke Brouwer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Cinthya Del Angel Zuivre
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Ronald van Os
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| |
Collapse
|
37
|
Yue Z, Lei M, Paus R, Chuong CM. The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biol Rev Camb Philos Soc 2021; 96:2573-2583. [PMID: 34145718 PMCID: PMC10874616 DOI: 10.1111/brv.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
In organ regeneration, the regulatory logic at a systems level remains largely unclear. For example, what defines the quantitative threshold to initiate regeneration, and when does the regeneration process come to an end? What leads to the qualitatively different responses of regeneration, which restore the original structure, or to repair which only heals a wound? Here we discuss three examples in skin regeneration: epidermal recovery after radiation damage, hair follicle fate choice after chemotherapy damage, and wound-induced feather regeneration. We propose that the molecular regulatory circuitry is of paramount significance in organ regeneration. It is conceivable that defects in these controlling pathways may lead to failed regeneration and/or organ renewal, and understanding the underlying logic could help to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400038, China
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
38
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
39
|
Nam K, Dos Santos HT, Maslow F, Trump BG, Lei P, Andreadis ST, Baker OJ. Laminin-1 Peptides Conjugated to Fibrin Hydrogels Promote Salivary Gland Regeneration in Irradiated Mouse Submandibular Glands. Front Bioeng Biotechnol 2021; 9:729180. [PMID: 34631679 PMCID: PMC8498954 DOI: 10.3389/fbioe.2021.729180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies demonstrated that salivary gland morphogenesis and differentiation are enhanced by modification of fibrin hydrogels chemically conjugated to Laminin-1 peptides. Specifically, Laminin-1 peptides (A99: CGGALRGDN-amide and YIGSR: CGGADPGYIGSRGAA-amide) chemically conjugated to fibrin promoted formation of newly organized salivary epithelium both in vitro (e.g., using organoids) and in vivo (e.g., in a wounded mouse model). While these studies were successful, the model's usefulness for inducing regenerative patterns after radiation therapy remains unknown. Therefore, the goal of the current study was to determine whether transdermal injection with the Laminin-1 peptides A99 and YIGSR chemically conjugated to fibrin hydrogels promotes tissue regeneration in irradiated salivary glands. Results indicate that A99 and YIGSR chemically conjugated to fibrin hydrogels promote formation of functional salivary tissue when transdermally injected to irradiated salivary glands. In contrast, when left untreated, irradiated salivary glands display a loss in structure and functionality. Together, these studies indicate that fibrin hydrogel-based implantable scaffolds containing Laminin-1 peptides promote secretory function of irradiated salivary glands.
Collapse
Affiliation(s)
- Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Harim T Dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Frank Maslow
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bryan G Trump
- School of Dentistry, University of Utah, Salt Lake City, UT, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Center of Cell, Gene and Tissue Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Olga J Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States.,Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
40
|
Kim D, Yoon YJ, Choi D, Kim J, Lim JY. 3D Organoid Culture From Adult Salivary Gland Tissues as an ex vivo Modeling of Salivary Gland Morphogenesis. Front Cell Dev Biol 2021; 9:698292. [PMID: 34458260 PMCID: PMC8397473 DOI: 10.3389/fcell.2021.698292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lumen formation of salivary glands has been investigated using in vivo or ex vivo rudiment culture models. In this study, we used a three-dimensional (3D) salivary gland organoid culture system and demonstrated that lumen formation could be recapitulated in mouse SMG organoids. In our organoid culture system, lumen formation was induced by vasoactive intestinal peptide and accelerated by treatment with RA. Furthermore, lumen formation was observed in branching duct-like structure when cultured in combination of fibroblast growth factors (FGF) in the presence of retinoic acid (RA). We suggest RA signaling-mediated regulation of VIPR1 and KRT7 as the underlying mechanism for lumen formation, rather than apoptosis in the organoid culture system. Collectively, our results support a fundamental role for RA in lumen formation and demonstrate the feasibility of 3D organoid culture as a tool for studying salivary gland morphogenesis.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dojin Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jisun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
41
|
Effects of oligonol on the submandibular gland in ovariectomized rats. Biomed Pharmacother 2021; 141:111897. [PMID: 34328116 DOI: 10.1016/j.biopha.2021.111897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to observe the effects of oligonol on submandibular gland dysfunction in ovariectomized rats. We randomly divided female Sprague-Dawley rats into sham-operated, ovariectomized, and oligonol-treated ovariectomized groups. Oligonol was intraperitoneally administered at 30 mg/kg daily for six weeks. Lipogenesis increased after the ovariectomy while fatty acid oxidation increased and intracellular triglyceride levels decreased in response to oligonol treatment. Submandibular gland fibrosis characterized by collagen type I accumulation was observed in the ovariectomized group. However, oligonol markedly reduced fibrosis to a level comparable to that observed in the sham group. Aquaporin 1 and glucose transporter 4 were downregulated in the ovariectomized group. Nevertheless, both factors were significantly upregulated by oligonol treatment. However, aquaporin 5 was significantly downregulated in the oligonol treatment group. Our findings indicate that oligonol protects against damage in postmenopausal rat salivary glands.
Collapse
|
42
|
Piraino LR, Benoit DSW, DeLouise LA. Salivary Gland Tissue Engineering Approaches: State of the Art and Future Directions. Cells 2021; 10:1723. [PMID: 34359893 PMCID: PMC8303463 DOI: 10.3390/cells10071723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023] Open
Abstract
Salivary gland regeneration is important for developing treatments for radiation-induced xerostomia, Sjögren's syndrome, and other conditions that cause dry mouth. Culture conditions adopted from tissue engineering strategies have been used to recapitulate gland structure and function to study and regenerate the salivary glands. The purpose of this review is to highlight current trends in the field, with an emphasis on soluble factors that have been shown to improve secretory function in vitro. A PubMed search was conducted to identify articles published in the last 10 years and articles were evaluated to identify the most promising approaches and areas for further research. Results showed increasing use of extracellular matrix mimetics, such as Matrigel®, collagen, and a variety of functionalized polymers. Soluble factors that provide supportive cues, including fibroblast growth factors (FGFs) and neurotrophic factors, as well as chemical inhibitors of Rho-associated kinase (ROCK), epidermal growth factor receptor (EGFR), and transforming growth factor β receptor (TGFβR) have shown increases in important markers including aquaporin 5 (Aqp5); muscle, intestine, and stomach expression 1 (Mist1); and keratin (K5). However, recapitulation of tissue function at in vivo levels is still elusive. A focus on identification of soluble factors, cells, and/or matrix cues tested in combination may further increase the maintenance of salivary gland secretory function in vitro. These approaches may also be amenable for translation in vivo to support successful regeneration of dysfunctional glands.
Collapse
Affiliation(s)
- Lindsay R. Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
43
|
Toan NK, Ahn SG. Aging-Related Metabolic Dysfunction in the Salivary Gland: A Review of the Literature. Int J Mol Sci 2021; 22:5835. [PMID: 34072470 PMCID: PMC8198609 DOI: 10.3390/ijms22115835] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Aging-related salivary dysfunction commonly induces the poor oral health, including decreased saliva flow and dental caries. Although the clinical significance of the salivary glands is well-known, the complex metabolic pathways contributing to the aging-dysfunction process are only beginning to be uncovered. Here, we provide a comprehensive overview of the metabolic changes in aging-mediated salivary gland dysfunction as a key aspect of oral physiology. Several metabolic neuropeptides or hormones are involved in causing or contributing to salivary gland dysfunction, including hyposalivation and age-related diseases. Thus, aging-related metabolism holds promise for early diagnosis, increased choice of therapy and the identification of new metabolic pathways that could potentially be targeted in salivary gland dysfunction.
Collapse
Affiliation(s)
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| |
Collapse
|
44
|
Nanduri LSY, Duddempudi PK, Yang WL, Tamarat R, Guha C. Extracellular Vesicles for the Treatment of Radiation Injuries. Front Pharmacol 2021; 12:662437. [PMID: 34084138 PMCID: PMC8167064 DOI: 10.3389/fphar.2021.662437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Normal tissue injury from accidental or therapeutic exposure to high-dose radiation can cause severe acute and delayed toxicities, which result in mortality and chronic morbidity. Exposure to single high-dose radiation leads to a multi-organ failure, known as acute radiation syndrome, which is caused by radiation-induced oxidative stress and DNA damage to tissue stem cells. The radiation exposure results in acute cell loss, cell cycle arrest, senescence, and early damage to bone marrow and intestine with high mortality from sepsis. There is an urgent need for developing medical countermeasures against radiation injury for normal tissue toxicity. In this review, we discuss the potential of applying secretory extracellular vesicles derived from mesenchymal stromal/stem cells, endothelial cells, and macrophages for promoting repair and regeneration of organs after radiation injury.
Collapse
Affiliation(s)
- Lalitha Sarad Yamini Nanduri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Phaneendra K. Duddempudi
- Department of Biochemistry, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
- Institute for Onco-Physics, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, United States
| |
Collapse
|
45
|
Chansaenroj A, Yodmuang S, Ferreira JN. Trends in Salivary Gland Tissue Engineering: From Stem Cells to Secretome and Organoid Bioprinting. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:155-165. [DOI: 10.1089/ten.teb.2020.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajjima Chansaenroj
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - João N. Ferreira
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Ok SM, Ho D, Lynd T, Ahn YW, Ju HM, Jeong SH, Cheon K. Candida Infection Associated with Salivary Gland-A Narrative Review. J Clin Med 2020; 10:E97. [PMID: 33396602 PMCID: PMC7795466 DOI: 10.3390/jcm10010097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022] Open
Abstract
Candida species are common global opportunistic pathogens that could repeatedly and chronically cause oral mucosa infection and create an inflammatory environment, leading to organ dysfunction. Oral Candida infections may cause temporary or permanent damage to salivary glands, resulting in the destruction of acinar cells and the formation of scar tissue. Restricted function of the salivary glands leads to discomfort and diseases of the oral mucosa, such as dry mouth and associated infection. This narrative review attempts to summarize the anatomy and function of salivary glands, the associations between Candida and saliva, the effects of Candida infection on salivary glands, and the treatment strategies. Overall, clinicians should proactively manage Candida infections by educating patients on oral hygiene management for vulnerable populations, conducting frequent checks for a timely diagnosis, and providing an effective treatment plan.
Collapse
Affiliation(s)
- Soo-Min Ok
- Department of Oral Medicine, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (S.-m.O.); (Y.-W.A.); (H.-M.J.); (S.-H.J.)
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Korea
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.H.); (T.L.)
| | - Donald Ho
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.H.); (T.L.)
| | - Tyler Lynd
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.H.); (T.L.)
| | - Yong-Woo Ahn
- Department of Oral Medicine, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (S.-m.O.); (Y.-W.A.); (H.-M.J.); (S.-H.J.)
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Korea
| | - Hye-Min Ju
- Department of Oral Medicine, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (S.-m.O.); (Y.-W.A.); (H.-M.J.); (S.-H.J.)
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Korea
| | - Sung-Hee Jeong
- Department of Oral Medicine, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (S.-m.O.); (Y.-W.A.); (H.-M.J.); (S.-H.J.)
- Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Korea
| | - Kyounga Cheon
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.H.); (T.L.)
| |
Collapse
|
47
|
Current and Future Perspectives of the Use of Organoids in Radiobiology. Cells 2020; 9:cells9122649. [PMID: 33317153 PMCID: PMC7764598 DOI: 10.3390/cells9122649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of cancer patients will be treated with radiotherapy, either alone or together with chemotherapy and/or surgery. Optimising the balance between tumour control and the probability of normal tissue side effects is the primary goal of radiation treatment. Therefore, it is imperative to understand the effects that irradiation will have on both normal and cancer tissue. The more classical lab models of immortal cell lines and in vivo animal models have been fundamental to radiobiological studies to date. However, each of these comes with their own limitations and new complementary models are required to fill the gaps left by these traditional models. In this review, we discuss how organoids, three-dimensional tissue-resembling structures derived from tissue-resident, embryonic or induced pluripotent stem cells, overcome the limitations of these models and thus have a growing importance in the field of radiation biology research. The roles of organoids in understanding radiation-induced tissue responses and in moving towards precision medicine are examined. Finally, the limitations of organoids in radiobiology and the steps being made to overcome these limitations are considered.
Collapse
|
48
|
Experimental Animal Model Systems for Understanding Salivary Secretory Disorders. Int J Mol Sci 2020; 21:ijms21228423. [PMID: 33182571 PMCID: PMC7696548 DOI: 10.3390/ijms21228423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Salivary secretory disorders are life-disrupting pathologic conditions with a high prevalence, especially in the geriatric population. Both patients and clinicians frequently feel helpless and get frustrated by the currently available therapeutic strategies, which consist mainly of palliative managements. Accordingly, to unravel the underlying mechanisms and to develop effective and curative strategies, several animal models have been developed and introduced. Experimental findings from these models have contributed to answer biological and biomedical questions. This review aims to provide various methodological considerations used for the examination of pathological fundamentals in salivary disorders using animal models and to summarize the obtained findings. The information provided in this review could provide plausible solutions for overcoming salivary disorders and also suggest purpose-specific experimental animal systems.
Collapse
|