1
|
Ramírez-Mejía MM, Martínez-Sánchez FD, Córdova-Gallardo J, Méndez-Sánchez N. Evaluating the RESET care program: Advancing towards scalable and effective healthcare solutions for metabolic dysfunction-associated liver disease. World J Hepatol 2025; 17:105254. [PMID: 40308819 PMCID: PMC12038424 DOI: 10.4254/wjh.v17.i4.105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
In this article, we discuss the recently published article by Soni et al. This study explores the effectiveness of a comprehensive digital health program, RESET care, which integrates personalized dietary plans, structured exercise, and cognitive behavioral therapy delivered through a mobile app equipped with Internet of Things devices such as body composition analyzers and smartwatches. Metabolic dysfunction-associated liver disease (MASLD), a global health burden affecting approximately 25% of the population, demands sustainable lifestyle modifications as its primary management strategy. The study reports that 100% of participants in the comprehensive intervention group (diet + exercise + cognitive behavioral therapy) achieved a weight reduction ≥ 7% (6.99 ± 2.98 kg, 7.00% ± 3.39%; P = 0.002), a clinically significant threshold for MASLD improvement. In addition, participants showed a mean weight reduction of 6.99 kg (101.10 ± 17.85 vs 94.11 ± 17.38, P < 0.001) and a body mass index reduction of 2.18 kg/m² (32.90 ± 3.02 vs 30.72 ± 3.41, P < 0.001). These results underscore the potential of digital health platforms to provide scalable, evidence-based solutions for the treatment of MASLD. While these results highlight the potential of digital platforms in the scalable and personalized management of MASLD, the small study sample size and short duration of follow-up limit the generalizability of the results. Future large-scale, long-term trials are needed to confirm sustained benefits, cost-effectiveness, and broader applicability. This letter contextualizes the study within the evolving landscape of MASLD management and emphasizes the clinical implications of integrating digital technologies into standard care.
Collapse
Affiliation(s)
- Mariana M Ramírez-Mejía
- Plan of Combined Studies in Medicine, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
| | | | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico.
| |
Collapse
|
2
|
Sharafifard F, Kazeminasab F, Ghanbari Rad M, Ghaedi K, Rosenkranz SK. The combined effects of high-intensity interval training and time-restricted feeding on the AKT/FOXO1/PEPCK pathway in diabetic rats. Sci Rep 2025; 15:13898. [PMID: 40263494 PMCID: PMC12015413 DOI: 10.1038/s41598-025-96703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
High-intensity interval training (HIIT) and time-restricted feeding (TRF) have shown promise for improving glucose regulation by increasing insulin sensitivity, enhancing glucose uptake, reducing glucose production. Therefore, this study investigates the combined effects of HIIT and TRF on the AKT/FOXO1/PEPCK signaling pathway in the liver tissue of type 2 diabetic rats. 42 male Wistar rats (4-5 weeks of age) were included in the study. The animals were randomly divided into two groups: (1) Standard diet (SD, non-Diabetic (Non-D, n = 7) (2) High-fat diet (HFD, n = 35) for 4 weeks. To induce diabetes, 35 mg/kg of streptozotocin (STZ) was injected intraperitoneally (IP). Animals with blood glucose levels of > 250 mg/dL were considered as diabetic. Diabetic rats were randomly divided into 5 groups (n = 7): (1) Diabetes-exercise (D-EX), (2) Diabetes-TRF (D-TRF), (3) Diabetes-combined TRF and exercise (D-TRF&EX), (4) Diabetes no treatment (D-NT), (5) Diabetes with metformin (D-MET). Interventions (HIIT and TRF) were performed for 10 weeks. Rats in the Non-D group did not exercise and did not receive metformin or TRF. Periodic Acid-Schiff (PAS) staining was used to histologically analyze the liver tissue. Levels of blood glucose, insulin resistance (IR), FOXO1 protein, PEPCK, and area under the curve (AUC) following the IPGTT test, were significantly decreased in treatment groups compared to the D-NT group (p < 0.05). The AKT protein levels (p < 0.01), glycogen content (p < 0.05), and insulin sensitivity (p < 0.001) increased in the treatment groups as compared with the D-NT group. Microscopic examination of the liver tissue in general showed a better tissue arrangement in both treatment groups than in the D-NT group. Combining HIIT and TRF may be effective for improving blood glucose regulation, insulin sensitivity, in type 2 diabetes, as compared to TRF or HIIT interventions alone.
Collapse
Affiliation(s)
- Fatemeh Sharafifard
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Fatemeh Kazeminasab
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Mahtab Ghanbari Rad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
3
|
Jo MG, Hong J, Kim J, Kim SH, Lee B, Choi HN, Lee SE, Kim YJ, Park H, Park DH, Roh GS, Kim CS, Yun SP. Physiological change of striatum and ventral midbrain's glia cell in response to different exercise modalities. Behav Brain Res 2025; 479:115342. [PMID: 39571940 DOI: 10.1016/j.bbr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Exercise not only regulates neurotransmitters and synapse formation but also enhances the function of multiple brain regions, beyond cortical activation. Prolonged aerobic or resistance exercise modality has been widely applied to reveal the beneficial effects on the brain, but few studies have investigated the direct effects of different exercise modalities and variations in exercise intensity on the neuroinflammatory response in the brain and overall health. Therefore, in this study, we investigated changes in brain cells and the immune environment of the brain according to exercise modalities. This study was conducted to confirm whether different exercise modalities affect the location and function of dopaminergic neurons, which are responsible for regulating voluntary movement, before utilizing animal models of disease. The results showed that high-intensity interval exercise (HIE) increased the activity of A2-reactive astrocytes in the striatum (STR), which is directly involved in movement control, resulting in neuroprotective effects. Both HIE and combined exercises (CE) increased the expression of dopamine transporter (DAT) in the STR without damaging dopamine neurons in the ventral midbrain (VM). This means that exercise training can help improve and maintain exercise capacity. In conclusion, specific exercise modalities or intensity of exercise may contribute to preventing neurodegenerative diseases such as Parkinson's disease or enhancing therapeutic effects when combined with medication for patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jiyeon Kim
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - So Eun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Heejung Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea; Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Gu Seob Roh
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Anatomy, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chang Sun Kim
- Department of Physical Education, Dongduk Women's University, Seoul 02748, Republic of Korea.
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
| |
Collapse
|
4
|
Thirunavukkarasu S, Ziegler TR, Weber MB, Staimez L, Lobelo F, Millard-Stafford ML, Schmidt MD, Venkatachalam A, Bajpai R, El Fil F, Prokou M, Kumar S, Tapp RJ, Shaw JE, Pasquel FJ, Nocera JR. High-Intensity Interval Training for Individuals With Isolated Impaired Fasting Glucose: Protocol for a Proof-of-Concept Randomized Controlled Trial. JMIR Res Protoc 2025; 14:e59842. [PMID: 39977858 PMCID: PMC11888011 DOI: 10.2196/59842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/16/2024] [Accepted: 10/09/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Standard lifestyle interventions have shown limited efficacy in preventing type 2 diabetes among individuals with isolated impaired fasting glucose (i-IFG). Hence, tailored intervention approaches are necessary for this high-risk group. OBJECTIVE This study aims to (1) assess the feasibility of conducting a high-intensity interval training (HIIT) study and the intervention acceptability among individuals with i-IFG, and (2) investigate the preliminary efficacy of HIIT in reducing fasting plasma glucose levels and addressing the underlying pathophysiology of i-IFG. METHODS This study is a 1:1 proof-of-concept randomized controlled trial involving 34 physically inactive individuals (aged 35-65 years) who are overweight or obese and have i-IFG. Individuals will undergo a 3-step screening procedure to determine their eligibility: step 1 involves obtaining clinical information from electronic health records, step 2 consists of completing questionnaires, and step 3 includes blood tests. All participants will be fitted with continuous glucose monitoring devices for approximately 80 days, including 10 days prior to the intervention, the 8-week intervention period, and 10 days following the intervention. Intervention participants will engage in supervised HIIT sessions using stationary "spin" cycle ergometers in groups of 5 or fewer. The intervention will take place 3 times a week for 8 weeks at the Aerobic Exercise Laboratory in the Rehabilitation Hospital at Emory University. Control participants will be instructed to refrain from engaging in intense physical activities during the study period. All participants will receive instructions to maintain a eucaloric diet throughout the study. Baseline and 8-week assessments will include measurements of weight, blood pressure, body composition, waist and hip circumferences, as well as levels of fasting plasma glucose, 2-hour plasma glucose, and fasting insulin. Primary outcomes include feasibility parameters, intervention acceptability, and participants' experiences, perceptions, and satisfaction with the HIIT intervention, as well as facilitators and barriers to participation. Secondary outcomes comprise between-group differences in changes in clinical measures and continuous glucose monitoring metrics from baseline to 8 weeks. Quantitative data analysis will include descriptive statistics, correlation, and regression analyses. Qualitative data will be analyzed using framework-driven and thematic analyses. RESULTS Recruitment for the study is scheduled to begin in February 2025, with follow-up expected to be completed by the end of September 2025. We plan to publish the study findings by the end of 2025. CONCLUSIONS The study findings are expected to guide the design and execution of an adequately powered randomized controlled trial for evaluating HIIT efficacy in preventing type 2 diabetes among individuals with i-IFG. TRIAL REGISTRATION Clinicaltrials.gov NCT06143345; https://clinicaltrials.gov/study/NCT06143345. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/59842.
Collapse
Affiliation(s)
- Sathish Thirunavukkarasu
- Department of Family and Preventive Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- Emory Global Diabetes Research Center, Woodruff Health Sciences Center, Emory University, Atlanta, GA, United States
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Mary Beth Weber
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Lisa Staimez
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Felipe Lobelo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Mindy L Millard-Stafford
- Exercise Physiology Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Michael D Schmidt
- Department of Kinesiology, University of Georgia, Atlanta, GA, United States
| | | | - Ram Bajpai
- School of Medicine, Keele University, Staffordshire, United Kingdom
| | - Farah El Fil
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Maria Prokou
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Siya Kumar
- College of Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Robyn J Tapp
- Research Institute for Health and Wellbeing, Coventry University, Coventry, United Kingdom
| | | | - Francisco J Pasquel
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Joe R Nocera
- Division of Physical Therapy, Departments of Neurology and Rehabilitation Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, United States
| |
Collapse
|
5
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
6
|
Shokri B, Mohebbi H, Mehrabani J. Amelioration of fructose-induced hepatic lipid accumulation by vitamin D 3 supplementation and high-intensity interval training in male Sprague‒Dawley rats. Lipids Health Dis 2024; 23:362. [PMID: 39501326 PMCID: PMC11536532 DOI: 10.1186/s12944-024-02347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Intrahepatic lipid accumulation (IHL), a hallmark of metabolic disorders, is closely associated with de novo lipogenesis (DNL). Notably, fructose feeding increased the DNL. Lifestyle modifications resulting from dietary changes and increased physical activity/exercise can decrease the IHL content. We examined the effects of vitamin D3 supplementation (VDS), high-intensity interval training (HIIT), and their combination on the transcription factors and enzymes of the DNL pathway in male Sprague‒Dawley rats fed a high-fructose diet (HFrD). METHODS Forty male rats were assigned to 5 groups (n = 8): CS (the control group had a standard diet); CF (the control group had HFrD (10% (w/v) fructose solution in tap water)); and FT (HFrD + HIIT: 10 bouts of 4 min of high-intensity running, corresponding to 85-90% of the maximal speed with 2 min active rest periods of 50% maximal speed, 5 days per week); FD (HFrD + intervention of intraperitoneal injection of 10000 IU/kg/week VDS); FTD (HFrD + HIIT + VDS) that were maintained for 12 weeks. ELISA, the GOD-POD assay, folch, western blotting, and oil red O staining were used to determine insulin, fasting blood glucose (FBG), hepatic triglyceride (TG) and cholesterol levels; SREBP1c, ChREBP-β, ACC1, FASN, p-ACC1, AMPK, p-AMPK, and PKA protein expression; and IHL content, respectively. RESULTS Both HIIT and VDS led to significant increases in the levels of PKA, AMPK, p-AMPK, and p-ACC1, as well as significant decreases in the levels of SREBP1c, ChREBP-β, ACC1, FASN, insulin, FBG, liver TG, liver cholesterol, and IHL. HIIT exhibited superior efficacy over VDS in reducing ChREBP-β, ACC1, insulin, FBG, liver TG and cholesterol, as well as increasing p-ACC1 and PKA. Notably, the combined intervention of HIIT and VDS yielded the most substantial improvements across all the parameters. CONCLUSIONS HFrD causes IHL accumulation and the onset of diabetes, whereas VDS and HIIT, along with their combined effects, prevent the consequences of HFrD.
Collapse
Affiliation(s)
- Behnaz Shokri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Hamid Mohebbi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran.
| | - Javad Mehrabani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
7
|
Sezer T, Okudan N, Belviranli M. Comparing the effect of high-intensity interval exercise and voluntary exercise training on cognitive functions in rats. Neurosci Lett 2024; 842:137993. [PMID: 39306028 DOI: 10.1016/j.neulet.2024.137993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
It is known that exercise increases brain-derived neurotrophic factor (BDNF) levels in the hippocampus, the brain region responsible for learning and memory, resulting in improved cognitive functions and learning processes. However, it is claimed that different types of exercise cause different responses in the brain. It is thought that lactate and osteocalcin secreted in response to exercise are associated with an increase in BDNF levels. However, there are not enough studies on this subject. This study aimed to compare the effects of high-intensity interval training (HIIT) and voluntary exercise training on cognitive performance and molecular connections. Male rats were randomly divided into control, voluntary exercise training and HIIT groups. The voluntary exercise group had free access to the voluntary wheel for 8 weeks. The HIIT group performed HIIT on the treadmill 3 days a week for 8 weeks. The rats underwent open field (OF), elevated plus maze (EPM) and Morris water maze (MWM) tests 24 h after the last exercise training. Then, after blood was drawn under anesthesia, the rats were sacrificed and their hippocampus tissues were separated. Glucocorticoid and BDNF levels in the blood were evaluated by enzyme-linked immunosorbent assay (ELISA), and osteocalcin and BDNF expressions in the hippocampus were evaluated by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Neither voluntary exercise training nor HIIT had any significant effect on behavioral parameters assessed by OF, EPM and MWM tests. However, BDNF expression in hippocampus tissue was higher in the HIIT group than in the control group. In addition, osteocalcin expression in hippocampus tissue was higher in the HIIT and voluntary exercise groups than in the control group. In conclusion, according to the findings we obtained from this study, although it does not have a significant effect on cognitive functions, the effect of HIIT on brain functions seems to be more effective than voluntary exercise.
Collapse
Affiliation(s)
- Tuğba Sezer
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| | - Muaz Belviranli
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| |
Collapse
|
8
|
Siqueira GM, Souza ASS, Veiga RS, Felix AOC, Del Vecchio FB, Orcy RB. Effects of different training models and subsequent exercise cessation on adipose tissue and associated variables. Clin Nutr ESPEN 2024; 63:133-141. [PMID: 38944827 DOI: 10.1016/j.clnesp.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND The General Adaptation Syndrome and the supercompensation Model are concepts widely applied in exercise science. Considering that fat is essential for tissue and the main energy source during continuous moderate-intensity exercise (MICE), the hypothesis arises that this type of effort may pay off after a detraining period. OBJECTIVE This study aimed to investigate how different exercise models, followed by a period of detraining, affected adipose tissue cellularity in adult rats. Two specific models were examined: moderate-intensity continuous exercise (MICE) and high-intensity intermittent exercise (HIIT). MATERIALS AND METHODS This is an experimental study in which rats were allocated into three groups: i) Continuous moderate-intensity exercise (MICE); ii) High-intensity intermittent exercise (HIIT); and iii) Control group (GC). Data were collected in three moments, namely: baseline values (T1), after which the animals exercised on a treadmill for eight weeks (T2) and then were followed up for four weeks after interruption of physical exercise (T3). For statistical analysis, a two-way analysis of variance (ANOVA) was performed, with Tukey's post-hoc for the group (GC, MICE, or HIIT) and Bonferroni's for the moment (T1, T2 and T3). RESULTS Regarding the periepididymal mass, GC showed an increase of 45% in T3 compared to T2. The HIIT and MICE groups had lower T3 values when compared to the CG. Comparing groups relative to the delta variation between T2 and T3 showed a difference in periepididymal mass (p = 0.012), with HIIT showing lower values than CG (p = 0.009). Analysis of the number of periepididymal adipocytes showed that HIIT (p < 0.001) and GC (p = 0.003) captured smaller numbers of cells than MICE. CONCLUSION In conclusion, our findings demonstrated positive effects of both interventions (HIIT and MICE) in the control of periepididymal adipose tissue mass of adult rats after 4 weeks of exercise interruption, with less mass gain in HIIT. More adipocytes were observed in MICE compared to HIIT and GC. These results suggest that both exercise models helped control fat accumulation, even after detraining.
Collapse
Affiliation(s)
- Gabriel M Siqueira
- Postgraduate Program in Physical Education, Federal University of Pelotas, Brazil.
| | - Alex Sander S Souza
- Postgraduate Program in Physical Education, Federal University of Pelotas, Brazil
| | - Rousseau S Veiga
- Postgraduate Program in Physical Education, Federal University of Pelotas, Brazil
| | - Anelize O C Felix
- Postgraduate Veterinary Program, Federal University of Pelotas, Brazil
| | | | - Rafael B Orcy
- Postgraduate Program in Physical Education, Federal University of Pelotas, Brazil
| |
Collapse
|
9
|
Yang L, Lin W, Yan X, Zhang Z. Comparative effects of lifelong moderate-intensity continuous training and high-intensity interval training on blood lipid levels and mental well-being in naturally ageing mice. Exp Gerontol 2024; 194:112519. [PMID: 38992822 DOI: 10.1016/j.exger.2024.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE This study aimed to investigate the impact of lifelong exercise, including both moderate-intensity continuous training and high-intensity interval training, on blood lipid levels and mental behaviour in naturally ageing mice to identify effective exercise strategies for ageing-related health issues. METHODS Six-week-old male BALB/c mice were randomly assigned to one of four groups: young control (YC), natural ageing control (OC), lifelong moderate-intensity continuous exercise (EM), and lifelong high-intensity interval exercise (EH) groups. The EM group was trained at a speed corresponding to 70 % of the maximum running speed, while the EH group was trained at a running speed alternating between 50 % of the maximum running speed, 70 % of the maximum running speed, and 90 % of the maximum running speed. All exercise sessions were conducted three times per week, with each session lasting 50 min. Behavioural tests and blood sample collection were conducted at 72 weeks of age. RESULTS Ageing in mice led to changes in muscle and fat mass. Both the EM and EH groups showed greater muscle mass and lower fat mass than did the OC group. Ageing was associated with elevated anxiety (fewer open arm entries, time spent in the central region) and depression (lower sucrose preference) indicators. However, these changes were reversed in both exercise groups, with no differences between the two exercise groups. Blood lipid levels, including total cholesterol (TC), total triglycerides (TGs), low-density lipoprotein (LDL), and free fatty acid (FFA) levels, were greater in the OC group than in the YC group. Additionally, the OC group exhibited lower high-density lipoprotein (HDL) levels. However, both the EM and EH groups exhibited improved lipid profiles compared to those of the YC group. CONCLUSION Lifelong exercise, whether moderate-intensity continuous or high-intensity interval training, can preserve body health during ageing, prevent anxiety and depression, and maintain stable blood lipid levels. Both exercise types are equally effective, suggesting that exercise intensity may not be the critical factor underlying these beneficial adaptations.
Collapse
Affiliation(s)
- Ling Yang
- School of Physical Education, Shaoguan University, Shaoguan 512000, Guangdong, China; Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia
| | - Wentao Lin
- School of Physical Education and Health, Zhuhai College of Science and Technology, Zhuhai 519090, Guangdong, China
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia
| | - Zhishang Zhang
- Department of Physical Education, Guangdong Medical University, Dongguan 523808, Guangdong, China.
| |
Collapse
|
10
|
Kakde SP, Mushtaq M, Liaqat M, Ali H, Mushtaq MM, Sarwer MA, Ullah S, Hassan MW, Khalid A, Bokhari SFH. Emerging Therapies for Non-Alcoholic Steatohepatitis (NASH): A Comprehensive Review of Pharmacological and Non-Pharmacological Approaches. Cureus 2024; 16:e69129. [PMID: 39398771 PMCID: PMC11467241 DOI: 10.7759/cureus.69129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) has emerged as a significant global health concern, closely linked to the obesity epidemic and metabolic syndrome. This review explores emerging therapies for NASH that go beyond traditional lifestyle modifications. The complex pathophysiology of NASH, involving insulin resistance, lipotoxicity, oxidative stress, and chronic inflammation, offers multiple targets for therapeutic intervention. While lifestyle changes remain fundamental, their limitations in achieving sustained improvements highlight the need for effective pharmacological and interventional therapies. This review discusses novel pharmacological approaches, including farnesoid X receptor (FXR) agonists, peroxisome proliferator-activated receptor (PPAR) agonists, and agents addressing metabolic dysfunction, inflammation, and fibrosis. Promising candidates such as obeticholic acid, lanifibranor, and semaglutide are highlighted, along with combination therapies targeting multiple pathways simultaneously. Non-pharmacological interventions, including bariatric surgery, endoscopic bariatric and metabolic therapies, and innovative exercise regimens, are also examined for their potential in NASH management. Despite significant advancements, NASH drug development faces challenges due to the disease's complexity, patient heterogeneity, and stringent regulatory requirements. This review also addresses these limitations and explores future directions, including personalized medicine approaches, non-invasive diagnostic tools, and the potential of microbiome modulation and regenerative therapies. The evolving landscape of NASH research emphasizes the need for multidisciplinary approaches integrating advances in diagnostics, therapeutics, and digital health technologies. As the field progresses, the focus remains on developing more effective, personalized, and accessible strategies for preventing, diagnosing, and treating NASH, with the ultimate goal of improving outcomes for patients affected by this increasingly prevalent liver disease.
Collapse
Affiliation(s)
- Shradha P Kakde
- Internal Medicine, Mahatma Gandhi Mission Institute of Health Sciences, Aurangabad, IND
| | - Maham Mushtaq
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Maryyam Liaqat
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Husnain Ali
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | | | - Sami Ullah
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | - Asma Khalid
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | |
Collapse
|
11
|
Peng M, Zou R, Yao S, Meng X, Wu W, Zeng F, Chen Z, Yuan S, Zhao F, Liu W. High-intensity interval training and medium-intensity continuous training may affect cognitive function through regulation of intestinal microbial composition and its metabolite LPS by the gut-brain axis. Life Sci 2024; 352:122871. [PMID: 38936602 DOI: 10.1016/j.lfs.2024.122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
AIMS The gut-brain axis is the communication mechanism between the gut and the central nervous system, and the intestinal flora and lipopolysaccharide (LPS) play a crucial role in this mechanism. Exercise regulates the gut microbiota composition and metabolite production (i.e., LPS). We aimed to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on cognitive function in C57BL/6 J mice through gut-brain axis regulation of gut microbiota composition and LPS displacement. MAIN METHODS C57BL/6 J male mice were randomly divided into sedentary, HIIT, and MICT groups. After 12 weeks of exercise intervention, the cognitive function of the brain and mRNA levels of related inflammatory factors were measured. RNA sequencing, Golgi staining, intestinal microbial 16 s rDNA sequencing, and ELISA were performed. KEY FINDINGS HIIT and MICT affect brain cognitive function by regulating the gut microbiota composition and its metabolite, LPS, through the gut microbiota-gut-brain axis. HIIT is suspected to have a risk: it can induce "intestinal leakage" by regulating intestinal permeability-related microbiota, resulting in excessive LPS in the blood and brain and activating M1 microglia in the brain, leading to reduced dendritic spine density and affecting cognitive function. SIGNIFICANCE This study revealed a potential link between changes in the gut microbiota and cognitive function. It highlighted the possible risk of HIIT in reducing dendritic spine density and affecting cognitive function.
Collapse
Affiliation(s)
- Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Sisi Yao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Yangtze University College of Arts and Sciences, Jingzhou 434020, China
| | - Fei Zhao
- The First Affiliated Hospital of Hunan Normal University, Changsha 410002, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
12
|
Springer C, Binsch C, Weide D, Toska L, Cremer AL, Backes H, Scheel AK, Espelage L, Kotzka J, Sill S, Kurowski A, Kim D, Karpinski S, Schnurr TM, Hansen T, Hartwig S, Lehr S, Cames S, Brüning JC, Lienhard M, Herwig R, Börno S, Timmermann B, Al-Hasani H, Chadt A. Depletion of TBC1D4 Improves the Metabolic Exercise Response by Overcoming Genetically Induced Peripheral Insulin Resistance. Diabetes 2024; 73:1058-1071. [PMID: 38608276 DOI: 10.2337/db23-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The Rab-GTPase-activating protein (RabGAP) TBC1D4 (AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type 2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet, we show that moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals. Importantly, in vivo and ex vivo analyses of glucose uptake revealed increased glucose clearance in interscapular brown adipose tissue and WAT from trained D4KO mice. Thus, chronic exercise is able to overcome the genetically induced insulin resistance caused by Tbc1d4 depletion. Gene variants in TBC1D4 may be relevant in future precision medicine as determinants of exercise response. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Deborah Weide
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Laura Toska
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Anna L Cremer
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Anna K Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sebastian Sill
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Anette Kurowski
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Daebin Kim
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Karpinski
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Theresia M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
13
|
Yuan XM, Xiang MQ, Ping Y, Zhang PW, Liu YT, Liu XW, Wei J, Tang Q, Zhang Y. Beneficial Effects of High-Intensity Interval Training and Dietary Changes Intervention on Hepatic Fat Accumulation in HFD-Induced Obese Rats. Physiol Res 2024; 73:273-284. [PMID: 38710057 PMCID: PMC11081183 DOI: 10.33549/physiolres.935195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2025] Open
Abstract
Lifestyle intervention encompassing nutrition and physical activity are effective strategies to prevent progressive lipid deposition in the liver. This study aimed to explore the effect of dietary change, and/or high-intensity interval training (HIIT) on hepatic lipid accumulation in high fat diet (HFD)-induced obese rats. We divided lean rats into lean control (LC) or HIIT groups (LH), and obese rats into obese normal chow diet (ND) control (ONC) or HIIT groups (ONH) and obese HFD control (OHC) or HIIT groups (OHH). We found that dietary or HIIT intervention significantly decreased body weight and the risk of dyslipidemia, prevented hepatic lipid accumulation. HIIT significantly improved mitochondrial fatty acid oxidation through upregulating mitochondrial enzyme activities, mitochondrial function and AMPK/PPARalpha/CPT1alpha pathway, as well as inhibiting hepatic de novo lipogenesis in obese HFD rats. These findings indicate that dietary alone or HIIT intervention powerfully improve intrahepatic storage of fat in diet induced obese rats. Keywords: Obesity, Exercise, Diet, Mitochondrial function, Lipid deposition.
Collapse
Affiliation(s)
- X-M Yuan
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li X, Yang JY, Hu WZ, Ruan Y, Chen HY, Zhang Q, Zhang Z, Ding ZS. Mitochondria-associated membranes contribution to exercise-mediated alleviation of hepatic insulin resistance: Contrasting high-intensity interval training with moderate-intensity continuous training in a high-fat diet mouse model. J Diabetes 2024; 16:e13540. [PMID: 38599845 PMCID: PMC11006604 DOI: 10.1111/1753-0407.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE Mitochondria-associated membranes (MAMs) serve pivotal functions in hepatic insulin resistance (IR). Our aim was to explore the potential role of MAMs in mitigating hepatic IR through exercise and to compare the effects of different intensities of exercise on hepatic MAMs formation in high-fat diet (HFD) mice. METHODS Male C57BL/6J mice were fed an HFD and randomly assigned to undergo supervised high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). IR was evaluated using the serum triglyceride/high-density lipoprotein cholesterol ratio (TG/HDL-C), glucose tolerance test (GTT), and insulin tolerance test (ITT). Hepatic steatosis was observed using hematoxylin-eosin (H&E) and oil red O staining. The phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase 3 beta (PI3K-AKT-GSK3β) signaling pathway was assessed to determine hepatic IR. MAMs were evaluated through immunofluorescence (colocalization of voltage-dependent anion-selective channel 1 [VDAC1] and inositol 1,4,5-triphosphate receptor [IP3R]). RESULTS After 8 weeks on an HFD, there was notable inhibition of the hepatic PI3K/Akt/GSK3β signaling pathway, accompanied by a marked reduction in hepatic IP3R-VDAC1 colocalization levels. Both 8-week HIIT and MICT significantly enhanced the hepatic PI3K/Akt/GSK3β signaling and colocalization levels of IP3R-VDAC1 in HFD mice, with MICT exhibiting a stronger effect on hepatic MAMs formation. Furthermore, the colocalization of hepatic IP3R-VDAC1 positively correlated with the expression levels of phosphorylation of protein kinase B (p-AKT) and phosphorylation of glycogen synthase kinase 3 beta (p-GSK3β), while displaying a negative correlation with serum triglyceride/high-density lipoprotein cholesterol levels. CONCLUSION The reduction in hepatic MAMs formation induced by HFD correlates with the development of hepatic IR. Both HIIT and MICT effectively bolster hepatic MAMs formation in HFD mice, with MICT demonstrating superior efficacy. Thus, MAMs might wield a pivotal role in exercise-induced alleviation of hepatic IR.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Jun Yang Yang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Wen Zhi Hu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - YuXin Ruan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Hong Ying Chen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| | - Zhe Shu Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of EducationEast China Normal UniversityShanghaiChina
- College of Physical Education & HealthEast China Normal UniversityShanghaiChina
| |
Collapse
|
15
|
Bórquez JC, Díaz-Castro F, La Fuente FPD, Espinoza K, Figueroa AM, Martínez-Ruíz I, Hernández V, López-Soldado I, Ventura R, Domingo JC, Bosch M, Fajardo A, Sebastián D, Espinosa A, Pol A, Zorzano A, Cortés V, Hernández-Alvarez MI, Troncoso R. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD. Metabolism 2024; 152:155765. [PMID: 38142958 DOI: 10.1016/j.metabol.2023.155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND AND AIM The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.
Collapse
Affiliation(s)
- Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Pino-de La Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Karla Espinoza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Ana María Figueroa
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile
| | - Inma Martínez-Ruíz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Vanessa Hernández
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain
| | - Iliana López-Soldado
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Raúl Ventura
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Joan Carles Domingo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Sebastián
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, Chile; Department of Medical Technology, Faculty of Medicine, University of Chile, Chile
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile.
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Chile; Obesity-induced Accelerated Aging (ObAGE), Universidad de Chile, Chile.
| |
Collapse
|
16
|
Hughey CC, Bracy DP, Rome FI, Goelzer M, Donahue EP, Viollet B, Foretz M, Wasserman DH. Exercise training adaptations in liver glycogen and glycerolipids require hepatic AMP-activated protein kinase in mice. Am J Physiol Endocrinol Metab 2024; 326:E14-E28. [PMID: 37938177 PMCID: PMC11193517 DOI: 10.1152/ajpendo.00289.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
Regular exercise elicits adaptations in glucose and lipid metabolism that allow the body to meet energy demands of subsequent exercise bouts more effectively and mitigate metabolic diseases including fatty liver. Energy discharged during the acute exercise bouts that comprise exercise training may be a catalyst for liver adaptations. During acute exercise, liver glycogenolysis and gluconeogenesis are accelerated to supply glucose to working muscle. Lower liver energy state imposed by gluconeogenesis and related pathways activates AMP-activated protein kinase (AMPK), which conserves ATP partly by promoting lipid oxidation. This study tested the hypothesis that AMPK is necessary for liver glucose and lipid adaptations to training. Liver-specific AMPKα1α2 knockout (AMPKα1α2fl/fl+AlbCre) mice and littermate controls (AMPKα1α2fl/fl) completed sedentary and exercise training protocols. Liver nutrient fluxes were quantified at rest or during acute exercise following training. Liver metabolites and molecular regulators of metabolism were assessed. Training increased liver glycogen in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. The inability to increase glycogen led to lower glycogenolysis, glucose production, and circulating glucose during acute exercise in trained AMPKα1α2fl/fl+AlbCre mice. Deletion of AMPKα1α2 attenuated training-induced declines in liver diacylglycerides. In particular, training lowered the concentration of unsaturated and elongated fatty acids comprising diacylglycerides in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. Training increased liver triacylglycerides and the desaturation and elongation of fatty acids in triacylglycerides of AMPKα1α2fl/fl+AlbCre mice. These lipid responses were independent of differences in tricarboxylic acid cycle fluxes. In conclusion, AMPK is required for liver training adaptations that are critical to glucose and lipid metabolism.NEW & NOTEWORTHY This study shows that the energy sensor and transducer, AMP-activated protein kinase (AMPK), is necessary for an exercise training-induced: 1) increase in liver glycogen that is necessary for accelerated glycogenolysis during exercise, 2) decrease in liver glycerolipids independent of tricarboxylic acid (TCA) cycle flux, and 3) decline in the desaturation and elongation of fatty acids comprising liver diacylglycerides. The mechanisms defined in these studies have implications for use of regular exercise or AMPK-activators in patients with fatty liver.
Collapse
Affiliation(s)
- Curtis C Hughey
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Ferrol I Rome
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mickael Goelzer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - E Patrick Donahue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
17
|
Parada Flores B, Luna-Villouta P, Martínez Salazar C, Flández Valderrama J, Valenzuela Contreras L, Flores-Rivera C, Vargas-Vitoria R. Physical Exercise Methods and Their Effects on Glycemic Control and Body Composition in Adults with Type 2 Diabetes Mellitus (T2DM): A Systematic Review. Eur J Investig Health Psychol Educ 2023; 13:2529-2545. [PMID: 37998066 PMCID: PMC10670304 DOI: 10.3390/ejihpe13110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The prevalence of T2DM represents a challenge for health agencies due to its high risk of morbidity and mortality. Physical Activity (PA) is one of the fundamental pillars for the treatment of T2DM, so Physical Exercise (PE) programs have been applied to research their effectiveness. The objective of the study was to analyze the effects of PE methods on glycemic control and body composition of adults with T2DM. A systematic review without meta-analysis was performed, using the PubMed database. Quasi-experimental and pure experimental clinical trials were included, which were available free of charge and were published during 2010-2020. In the results, 589 articles were found and 25 passed the inclusion criteria. These were classified and analyzed according to the methods identified (AE, IE, RE, COM, and others), duration and variable(s) studied. It is concluded that PE is effective for glycemic control and body composition in adults with T2DM using different methods (AE, IE, RE, COM, and others), both in the short and long term. Adequate organization of PE components such as frequency, duration, volume, and intensity, is essential.
Collapse
Affiliation(s)
- Bastián Parada Flores
- Facultad de Educación, Magíster en Ciencias de la Actividad Física, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Pablo Luna-Villouta
- Facultad de Educación, Departamento de Educación Física, Universidad de Concepción, Concepción 4030000, Chile;
| | - Cristian Martínez Salazar
- Departamento de Educación Física, Deportes y Recreación, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Jorge Flández Valderrama
- Facultad Filosofía y Humanidades, Instituto de Ciencias de la Educación, Escuela de Educación Física, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Luis Valenzuela Contreras
- Facultad de Educación, Pedagogía en Educación Física, Universidad Católica Silva Henríquez, Santiago 8330226, Chile;
| | - Carol Flores-Rivera
- Facultad de Educación y Ciencias Sociales, Universidad Andres Bello, Concepción 4030000, Chile;
| | - Rodrigo Vargas-Vitoria
- Facultad de Educación, Pedagogía en Educación Física, Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
18
|
Chen X, Huang W, Zhang J, Li Y, Xing Z, Guo L, Jiang H, Zhang J. High-intensity interval training induces lactylation of fatty acid synthase to inhibit lipid synthesis. BMC Biol 2023; 21:196. [PMID: 37726733 PMCID: PMC10510295 DOI: 10.1186/s12915-023-01698-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The aim of study was to observe the effect of increased lactate levels during high-intensity interval training (HIIT) on protein lactylation, identify the target protein, and investigate the regulatory effect of lactylation on the function of the protein. METHODS C57B/L6 mice were divided into 3 groups: the control group, HIIT group, and dichloroacetate injection + HIIT group (DCA + HIIT). The HIIT and DCA + HIIT groups underwent 8 weeks of HIIT treatment, and the DCA + HIIT group was injected DCA before HIIT treatment. The expression of lipid metabolism-related genes was determined. Protein lactylation in subcutaneous adipose tissue was identified and analyzed using 4D label-free lactylation quantitative proteomics and bioinformatics analyses. The fatty acid synthase (FASN) lactylation and activity was determined. RESULTS HIIT had a significant effect on fat loss; this effect was weakened when lactate production was inhibited. HIIT significantly upregulated the protein lactylation while lactate inhibition downregulated in iWAT. FASN had the most modification sites. Lactate treatment increased FASN lactylation levels, inhibited FASN activity, and reduced palmitate and triglyceride synthesis in 3T3-L1 cells. CONCLUSIONS This investigation revealed that lactate produced by HIIT increased protein pan-lactylation levels in iWAT. FASN lactylation inhibited de novo lipogenesis, which may be an important mechanism in HIIT-induced fat loss.
Collapse
Affiliation(s)
- Xuefei Chen
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
- School of Physical Education Institute (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Wenhua Huang
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Jingbo Zhang
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Yanjun Li
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Zheng Xing
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Lanlan Guo
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Hu Z, Li X, Yang Y, Zhang Z, Ding S. High-Intensity Interval Training Ameliorates High-Fat Diet-Induced Metabolic Disorders via the Cyclic GMP-AMP Synthase-Stimulator of Interferon Gene Signaling Pathway. Int J Mol Sci 2023; 24:13840. [PMID: 37762143 PMCID: PMC10531371 DOI: 10.3390/ijms241813840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic diseases are growing in prevalence worldwide. Although the pathogenesis of metabolic diseases remains ambiguous, the correlation between cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) and metabolic diseases has been identified recently. Exercise is an effective intervention protecting against metabolic diseases, however, the role of the cGAS-STING signaling pathway in this process is unclear, and the effect and mechanism of different exercise intensities on metabolic disorders are still unknown. Thus, we explored the association between exercise to ameliorate HFD-induced metabolic disorders and the cGAS-STING signaling pathway and compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). Male C57BL/6 mice (6-8 weeks old) were fed HFD for 8 weeks to establish a metabolic disease model and were subjected to 8-week MICT or HIIT training. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were used to assess glucose metabolism. Serum triglyceride (TG) and total cholesterol (TC) were measured to evaluate lipid metabolism. Oil red staining was used to observe the lipid droplets in the gastrocnemius muscle. An enzyme-linked immunosorbent assay was used to detect the serum inflammatory factors IL-6 and IFN-β. The protein expression of the cGAS-STING signaling pathway was detected by the WesTM automatic protein expression analysis system. We reported that HFD induced metabolic disorders with obesity, abnormal glucolipid metabolism, and significant inflammatory responses. Both HIIT and MICT ameliorated the above adverse reactions, but MICT was superior to HIIT in improving glucolipid disorders. Additionally, HIIT significantly increased the expression of STING protein, as well as the phosphorylation of TBKI and the ratio of p-IRF3/IRF3. MICT only increased the expression of STING protein. Our findings suggest that HIIT may alleviate HFD-induced metabolic disorder phenotype through the cGAS-STING signaling pathway. However, the improvement of MICT on metabolic disorder phenotype is less associated with the cGAS-STING pathway, which needs to be further explored.
Collapse
Affiliation(s)
- Zhiwen Hu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yangjun Yang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1320. [PMID: 37512131 PMCID: PMC10384171 DOI: 10.3390/medicina59071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Physical exercise is an important therapeutic modality for treating and managing diabetes. High-intensity interval training (HIIT) is considered one of the best non-drug strategies for preventing and treating type 2 diabetes mellitus (T2DM) by improving mitochondrial biogenesis and function. This study aimed to determine the effects of 12 weeks of HIIT training on the expression of tumor suppressor protein-p53, mitochondrial cytochrome c oxidase (COX), and oxidative stress in patients with T2DM. Methods: A total of thirty male sedentary patients aged (45-60 years) were diagnosed with established T2DM for more than five years. Twenty healthy volunteers, age- and sex-matched, were included in this study. Both patients and control subjects participated in the HIIT program for 12 weeks. Glycemic control variables including p53 (U/mL), COX (ng/mL), total antioxidant capacity (TAC, nmole/µL), 8-hydroxy-2'-deoxyguanosine (8-OHdG, ng/mL), as well as genomic and mitochondrial DNA content were measured in both the serum and muscle tissues of control and patient groups following exercise training. Results: There were significant improvements in fasting glucose levels. HbA1c (%), HOMA-IR (mUmmol/L2), fasting insulin (µU/mL), and C-peptide (ng/mL) were reported in T2DM and healthy controls. A significant decrease was also observed in p53 protein levels. COX, 8-OhdG, and an increase in the level of TAC were reported in T2DM following 12 weeks of HIIT exercise. Before and after exercise, p53; COX, mt-DNA content, TAC, and 8-OhdG showed an association with diabetic control parameters such as fasting glucose (FG), glycated hemoglobin (HbA1C, %), C-peptide, fasting insulin (FI), and homeostatic model assessment for insulin resistance (HOMA-IR) in patients with T2DM. These findings support the positive impact of HIIT exercise in improving regulation of mitochondrial biogenesis and subsequent control of diabetes through anti-apoptotic and anti-oxidative pathways. Conclusions: A 12-week HIIT program significantly improves diabetes by reducing insulin resistance; regulating mitochondrial biogenesis; and decreasing oxidative stress capacity among patients and healthy controls. Also; p53 protein expression; COX; 8-OhdG; and TAC and mt-DNA content were shown to be associated with T2DM before and after exercise training.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| |
Collapse
|
21
|
Bari MA, MahmoodAlobaidi MA, Ansari HA, Parrey JA, Ajhar A, Nuhmani S, Alghadir AH, Khan M. Effects of an aerobic training program on liver functions in male athletes: a randomized controlled trial. Sci Rep 2023; 13:9427. [PMID: 37296202 PMCID: PMC10256744 DOI: 10.1038/s41598-023-36361-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The optimal functioning of the liver is essential for athletic performance. It is necessary to maintain the liver's enzymes at an optimal level so that liver cells can be protected from inflammation or damage. This study investigated the effects of a 12-week aerobic exercise program on the liver function of adult athletes. A pretest-posttest experimental design was used. A total of thirty healthy male athletes (football players) aged 21 to 24 years were recruited for this study and randomly and equally divided into the experimental group (EG) and control group (CG). The CG did not participate in any special activities. The EG performed an aerobic training program consisting of several exercises for 12 weeks. Evaluation of all participants in both groups was carried out before and after the intervention by measuring the blood levels of Alkaline phosphate, AST/SGOT, ALT/SGPT, Bilirubin Total/indirect/direct, Albumin, Globulin, and Total protein using the standard methods by collecting blood samples. There was a significant decrease (p < 0.05) in Bilirubin and globulin levels in the EG after 12 weeks of aerobic training sessions. However, there was no significant difference in alkaline phosphate, AST/SGOT, ALT/SGPT Total protein, and Albumin (p > 0.05) between both groups post-treatment. The 12 weeks of aerobic training used in the study can potentially improve the liver function of adult athletes.
Collapse
Affiliation(s)
- Mohd Arshad Bari
- Department of Physical Education, Aligarh Muslim University, Aligarh, India
| | | | - Hena Ayub Ansari
- Department of Pathology, JN Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Arish Ajhar
- Department of Physical Education, Aligarh Muslim University, Aligarh, India
| | - Shibili Nuhmani
- Department of Physical Therapy, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Masood Khan
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Dos-Santos A, do Nascimento Carvalho B, Da Costa-Santos N, Mello-Silva FQD, Pereira ADA, Jesus NRD, De Angelis K, Irigoyen MC, Bernardes N, Caperuto EC, Scapini KB, Sanches IC. Effects of Exercise Intensity on Cardiometabolic Parameters of Ovariectomized Obese Mice. Int J Sports Med 2023. [PMID: 37146639 DOI: 10.1055/a-2044-8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The aim of this study was to compare the effects of continuous-moderate vs. high-intensity interval aerobic training on cardiovascular and metabolic parameters in ovariectomized high-fat-fed mice. C57BL/6 female ovariectomized were divided into four groups (n=8): low-fat-fed sedentary (SLF); high-fat-fed sedentary (SHF); high-fat-fed moderate-intensity continuous trained (MICT-HF); and high-fat-fed high-intensity interval aerobic trained (HIIT-HF). The high-fat diet lasted 10 weeks. Ovariectomy was performed in the fourth week. The exercise training was carried out in the last four weeks of protocol. Fasting glycemia, oral glucose tolerance, arterial pressure, baroreflex sensitivity, and cardiovascular autonomic modulation were evaluated. Moderate-intensity continuous training prevented the increase in arterial pressure and promoted a reduction in HR at rest, associated with an improvement in the sympathovagal balance in MICT-HF vs. SHF. The high-intensity interval training reduced blood glucose and glucose intolerance in HIIT-HF vs. SHF and MICT-HF. In addition, it improved sympathovagal balance in HIIT-HF vs. SHF. Moderate-intensity continuous training was more effective in promoting cardiovascular benefits, while high-intensity interval training was more effective in promoting metabolic benefits.
Collapse
Affiliation(s)
- Adriano Dos-Santos
- Human Movement Laboratory, Sao Judas Tadeu University, Sao Paulo, Brazil
| | | | | | | | | | | | | | - Maria Claudia Irigoyen
- Heart Institute, department of hypertension, University of Sao Paulo, Faculty of Medicine, Sao Paulo, Brazil
| | - Nathalia Bernardes
- Human Movement Laboratory, Sao Judas Tadeu University, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
23
|
Castaño C, Meza-Ramos A, Batlle M, Guasch E, Novials A, Párrizas M. Treatment with EV-miRNAs Alleviates Obesity-Associated Metabolic Dysfunction in Mice. Int J Mol Sci 2022; 23:ijms232314920. [PMID: 36499248 PMCID: PMC9736074 DOI: 10.3390/ijms232314920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
Most cells release extracellular vesicles (EVs) that can be detected circulating in blood. We and others have shown that the microRNA contents of these vesicles induce transcriptomic changes in acceptor cells, contributing to the adjustment of metabolic homeostasis in response to environmental demands. Here, we explore the potential for modulating obesity- and exercise-derived EV-microRNAs to treat the metabolic dysfunction associated with obesity in mice. Treatment with EV-miRNAs alleviated glucose intolerance and insulin resistance in obese mice to an extent similar to that of high-intensity interval training, although only exercise improved cardiorespiratory fitness and decreased body weight. Mechanistically, EV-miRNAs decreased fatty acid and cholesterol biosynthesis pathways in the liver, reducing hepatic steatosis and increasing insulin sensitivity, resulting in decreased glycemia and triglyceridemia. Our data suggest that manipulation of EV-miRNAs may be a viable strategy to alleviate metabolic dysfunction in obese and diabetic patients who are unable to exercise, although actual physical activity is needed to improve cardiorespiratory fitness.
Collapse
Affiliation(s)
- Carlos Castaño
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| | - Aline Meza-Ramos
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Montserrat Batlle
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
| | - Eduard Guasch
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
- Cardiovascular Institute, Hospital Clinic, 08036 Barcelona, Spain
| | - Anna Novials
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
- Correspondence: (A.N.); (M.P.)
| | - Marcelina Párrizas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
- Correspondence: (A.N.); (M.P.)
| |
Collapse
|
24
|
Pereira RM, da Cruz Rodrigues KC, Sant'Ana MR, da Rocha AL, Morelli AP, Veras ASC, Gaspar RS, da Costa Fernandes CJ, Teixeira GR, Simabuco FM, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Moura LP. FOXO1 is downregulated in obese mice subjected to short-term strength training. J Cell Physiol 2022; 237:4262-4274. [PMID: 36125908 DOI: 10.1002/jcp.30882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022]
Abstract
Obesity is a worldwide health problem and is directly associated with insulin resistance and type 2 diabetes. The liver is an important organ for the control of healthy glycemic levels, since insulin resistance in this organ reduces phosphorylation of forkhead box protein 1 (FOXO1) protein, leading to higher hepatic glucose production (HGP) and fasting hyperglycemia. Aerobic physical training is known as an important strategy in increasing the insulin action in the liver by increasing FOXO1 phosphorylation and reducing gluconeogenesis. However, little is known about the effects of strength training in this context. This study aimed to investigate the effects of short-term strength training on hepatic insulin sensitivity and glycogen synthase kinase-3β (GSK3β) and FOXO1 phosphorylation in obese (OB) mice. To achieve this goal, OB Swiss mice performed the strength training protocol (one daily session for 15 days). Short-term strength training increased the phosphorylation of protein kinase B and GSK3β in the liver after insulin stimulus and improved the control of HGP during the pyruvate tolerance test. On the other hand, sedentary OB animals reduced FOXO1 phosphorylation and increased the levels of nuclear FOXO1 in the liver, increasing the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) content. The bioinformatics analysis also showed positive correlations between hepatic FOXO1 levels and gluconeogenic genes, reinforcing our findings. However, strength-trained animals reverted to this scenario, regardless of body adiposity changes. In conclusion, short-term strength training is an efficient strategy to enhance the insulin action in the liver of OB mice, contributing to glycemic control by reducing the activity of hepatic FOXO1 and lowering PEPCK and G6Pase contents.
Collapse
Affiliation(s)
- Rodrigo M Pereira
- School of Applied Sciences, Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil.,School of Applied Sciences, Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Kellen C da Cruz Rodrigues
- School of Applied Sciences, Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil.,School of Applied Sciences, Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Marcella R Sant'Ana
- Nutrition Division, Laboratory of Nutritional Genomics, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana P Morelli
- Health Division, Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Allice S C Veras
- Department of Physical Education, School of Technology and Sciences, Postgraduate Program in Multicentric Physiological Sciences, São Paulo State University-UNESP, campus of Aracatuba, Presidente Prudente, Brazil.,Experimental Laboratory of Exercise Biology, State University of São Paulo-UNESP, Presidente Prudente, Brazil
| | - Rodrigo S Gaspar
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| | - Célio J da Costa Fernandes
- School of Applied Sciences, Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Giovana R Teixeira
- Department of Physical Education, School of Technology and Sciences, Postgraduate Program in Multicentric Physiological Sciences, São Paulo State University-UNESP, campus of Aracatuba, Presidente Prudente, Brazil.,Experimental Laboratory of Exercise Biology, State University of São Paulo-UNESP, Presidente Prudente, Brazil
| | - Fernando M Simabuco
- Health Division, Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Dennys E Cintra
- Nutrition Division, Laboratory of Nutritional Genomics, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Eduardo R Ropelle
- School of Applied Sciences, Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil.,School of Applied Sciences, Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - José R Pauli
- School of Applied Sciences, Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil.,School of Applied Sciences, Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leandro P de Moura
- School of Applied Sciences, Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, Brazil.,School of Applied Sciences, Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
25
|
Sordi AF, Silva BF, Furlan JP, Moraes SMFD, Guariglia DA, Peres SB. The effectiveness of high-intensity interval training on body composition of rodent models of obesity: A systematic review and meta-analysis. Physiol Int 2022. [PMID: 36057102 DOI: 10.1556/2060.2022.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 02/18/2024]
Abstract
The present systematic review was compiled to analyze the effectiveness of High-intensity interval training (HIIT) protocols on the body composition of rodents with obesity. Databases were searched until February 2021 for experimental trials in rodents with a minimum duration of four weeks of HIIT and endpoints associated with obesity. The data were analyzed by meta-analysis performed for comparisons of body composition. Sensitivity analysis was performed to investigate the consistency of individual researches. Of all of the 524 studies found, only 14 were included. The analysis showed a significant reduction in body weight ([CI 95%: -8.35; -1.98] P ≤ 0.01), adiposity index ([IC 95%: -1.04; -0.80] P ≤ 0.01), and fat pads ([IC 95%: -0.59; -0.06] P ≤ 0.01). HIIT performed on treadmill or water was effective to reduce body weight (P < 0.05). In conclusion, HIIT attenuated both body weight and adiposity induced either by HFD (high-fat diet) or by GOM (genetic obese model), thereby inducing positive changes in body composition.
Collapse
Affiliation(s)
- Ana Flávia Sordi
- 1 Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Bruno Ferrari Silva
- 3 UniCesumar University, Maringá, Brazil
- 4 Department of Physical Education, State University of Maringá, Maringá, Brazil
| | - Julia Pedrosa Furlan
- 1 Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | | | | | - Sidney Barnabé Peres
- 1 Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| |
Collapse
|
26
|
Heden TD, Chen C, Leland G, Mashek MM, Najt CP, Shang L, Chow LS, Mashek DG. Isolated and combined impact of dietary olive oil and exercise on markers of health and energy metabolism in female mice. J Nutr Biochem 2022; 107:109040. [PMID: 35533899 PMCID: PMC9626252 DOI: 10.1016/j.jnutbio.2022.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
An olive oil (OO) rich diet or high-intensity interval training (HIIT) independently improve markers of health and energy metabolism, but it is unknown if combining OO and HIIT synergize to improve these markers. This study characterized the isolated and combined impact of OO and HIIT on markers of health and energy metabolism in various tissues in C57BL/6J female mice. Nine-week-old mice were divided into four groups for a 12-week diet and/or exercise intervention including: (1) Control Diet without HIIT (CD), (2) Control Diet with HIIT (CD+HIIT), (3) OO diet (10% kcal from olive oil) without HIIT, and (4) OO diet with HIIT (OO+HIIT). Neither dietary OO or HIIT altered body weight, glucose tolerance, or serum lipids. HIIT, regardless of diet, increased aerobic capacity and HDL cholesterol levels. In liver and heart tissue, OO resulted in similar adaptations as HIIT including increased mitochondrial content and fatty acid oxidation but combining OO with HIIT did not augment these effects. In skeletal muscle, HIIT increased mitochondrial content in type II fibers similarly between diets. An RNA sequencing analysis on type I fibers revealed OO reduced muscle regeneration and lipid metabolism gene abundance, whereas HIIT increased the abundance of these genes, independent of diet. HIIT training, independent of diet, induced subcutaneous white adipose tissue (sWAT) hypertrophy, whereas OO induced gonadal white adipose tissue (gWAT) hypertrophy, an effect that was augmented with HIIT. These data highlight the pleiotropic effects of OO and HIIT, although their combination does not synergize to further improve most markers of health and energy metabolism.
Collapse
Affiliation(s)
- Timothy D Heden
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Chen Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Grace Leland
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Mara M Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Linshan Shang
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Lisa S Chow
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Minneapolis, MN
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN; Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Minneapolis, MN.
| |
Collapse
|
27
|
Jang J, Koh JH, Kim Y, Kim HJ, Park S, Chang Y, Jung J, Wolfe RR, Kim IY. Balanced Free Essential Amino Acids and Resistance Exercise Training Synergistically Improve Dexamethasone-Induced Impairments in Muscle Strength, Endurance, and Insulin Sensitivity in Mice. Int J Mol Sci 2022; 23:ijms23179735. [PMID: 36077132 PMCID: PMC9456044 DOI: 10.3390/ijms23179735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous study shows that an essential amino acid (EAA)-enriched diet attenuates dexamethasone (DEX)-induced declines in muscle mass and strength, as well as insulin sensitivity, but does not affect endurance. In the present study, we hypothesized that the beneficial effects will be synergized by adding resistance exercise training (RET) to EAA, and diet-free EAA would improve endurance. To test hypotheses, mice were randomized into the following four groups: control, EAA, RET, and EAA+RET. All mice except the control were subjected to DEX treatment. We evaluated the cumulative rate of myofibrillar protein synthesis (MPS) using 2H2O labeling and mass spectrometry. Neuromuscular junction (NMJ) stability, mitochondrial contents, and molecular signaling were demonstrated in skeletal muscle. Insulin sensitivity and glucose metabolism using 13C6-glucose tracing during oral glucose tolerance tests were analyzed. We found that EAA and RET synergistically improve muscle mass and/or strength, and endurance capacity, as well as insulin sensitivity, and glucose metabolism in DEX-treated muscle. These improvements are accomplished, in part, through improvements in myofibrillar protein synthesis, NMJ, fiber type preservation, and/or mitochondrial biogenesis. In conclusion, free EAA supplementation, particularly when combined with RET, can serve as an effective means that counteracts the adverse effects on muscle of DEX that are found frequently in clinical settings.
Collapse
Affiliation(s)
- Jiwoong Jang
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
| | - Jin-Ho Koh
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Hee-Joo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Sanghee Park
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Yewon Chang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Jiyeon Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Robert R. Wolfe
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Il-Young Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-899-6685
| |
Collapse
|
28
|
Jazwiec PA, Patterson VS, Ribeiro TA, Yeo E, Kennedy KM, Mathias PCF, Petrik JJ, Sloboda DM. Paternal obesity induces placental hypoxia and sex-specific impairments in placental vascularization and offspring metabolism. Biol Reprod 2022; 107:574-589. [PMID: 35377412 PMCID: PMC9382389 DOI: 10.1093/biolre/ioac066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Paternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether this metabolic dysfunction is associated with changes in placental vascular development and is fueled by endoplasmic reticulum (ER) stress-mediated changes in fetal hepatic development. We also determined whether paternal obesity indirectly affects the in utero environment by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow or high fat diet (60%kcal fat) for 8–10 weeks were time-mated with female mice to generate pregnancies and offspring. Glucose tolerance was evaluated in dams at mid-gestation (embryonic day (E) 14.5) and late gestation (E18.5). Hypoxia, angiogenesis, endocrine function, macronutrient transport, and ER stress markers were evaluated in E14.5 and E18.5 placentae and/or fetal livers. Maternal glucose tolerance was assessed at E14.5 and E18.5. Metabolic parameters were assessed in offspring at ~60 days of age. Paternal obesity did not alter maternal glucose tolerance but induced placental hypoxia and altered placental angiogenic markers, with the most pronounced effects in female placentae. Paternal obesity increased ER stress-related protein levels (ATF6 and PERK) in the fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Offspring of obese fathers were glucose intolerant and had impaired whole-body energy metabolism, with more pronounced effects in female offspring. Metabolic deficits in offspring due to paternal obesity may be mediated by sex-specific changes in placental vessel structure and integrity that contribute to placental hypoxia and may lead to poor fetal oxygenation and impairments in fetal metabolic signaling pathways in the liver.
Collapse
Affiliation(s)
- Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada
| | - Violet S Patterson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada
| | - Tatiane A Ribeiro
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada.,Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Paraná 87020-900, Brazil
| | - Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada
| | - Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada
| | - Paulo C F Mathias
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Paraná 87020-900, Brazil
| | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada.,Department of Pediatrics, McMaster University, Hamilton L8S 4L8, Canada.,Department of Obstetrics and Gynecology, McMaster University, Hamilton L8S 4L8, Canada
| |
Collapse
|
29
|
Khalafi M, Ravasi AA, Malandish A, Rosenkranz SK. The impact of high-intensity interval training on postprandial glucose and insulin: A systematic review and meta-analysis. Diabetes Res Clin Pract 2022; 186:109815. [PMID: 35271876 DOI: 10.1016/j.diabres.2022.109815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
AIMS We performed a systematic review and meta-analysis to investigate the effects of high-intensity interval training (HIIT) on postprandial glucose (PPG) and insulin (PPI) versus non-exercise control and moderate-intensity continuous training (MICT) in participants with both normal and impaired glucose. METHODS The PubMed, Scopus, and Web of Science electronic databases were searched up to October 2021 for randomized trials evaluating HIIT versus control and/or versus MICT on glucose and insulin AUC using oral glucose tolerance testing. Subgroup analyses based on intervention duration (short-duration < 8 weeks, moderate-duration ≥ 8 weeks), baseline glucose levels (normal glucose and impaired glucose) and type of HIIT (L-HIIT and SIT) were also conducted across included studies. RESULTS A total of 25 studies involving 870 participants were included in the current meta-analysis. HIIT effectively reduced glucose [-0.37 (95% CI -0.60 to -0.13), p = 0.002] and insulin [-0.36 (95% CI -0.68 to -0.04), p = 0.02] AUC when compared with a CON group. Reductions in glucose AUC were significant for those with impaired glucose at baseline (p = 0.03), but not for those with normal glucose levels (p = 0.11) and following moderate-duration (p = 0.01), but not short-duration interventions (p = 0.18). However, there were no differences in glucose (p = 0.76) or insulin (p = 0.43) AUC between HIIT and MICT intervention arms. CONCLUSIONS Our results demonstrated that both HIIT and MICT are effective for reducing postprandial glycemia and insulinemia, particularly by moderate-duration interventions, and in those with impaired glucose.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Ali A Ravasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Abbas Malandish
- Department of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Sara K Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
30
|
Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sci 2022; 298:120522. [PMID: 35367244 DOI: 10.1016/j.lfs.2022.120522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/02/2023]
Abstract
Lipid droplets (LD) are not just lipid stores. They are now recognized as highly dynamic organelles, having a life cycle that includes biogenesis, growth, steady-state, transport, and catabolism. Importantly, LD exhibit different features in terms of size, number, lipid composition, proteins, and interaction with other organelles, and all these features exert an impact on cellular homeostasis. The imbalance of LD function causes non-alcoholic fatty liver disease (NAFLD). Studies show that exercise attenuates NAFLD by decreasing LD content; however, reports show metabolic benefits without changes in LD amount (intrahepatic triglyceride levels) in NAFLD. Due to the multiple effects of exercise in LD features, we think that these metabolic benefits occur through changes in LD features in NAFLD, rather than only the reduction in content. Exercise increases energy mobilization and utilization from storages such as LD, and is one of the non-pharmacological treatments against NAFLD. Therefore, exercise modification of LD could be a target for NAFLD treatment. Here, we review the most up-to-date literature on this topic, and focus on recent findings showing that LD features could play an important role in the severity of NAFLD.
Collapse
Affiliation(s)
- Francisco Pino-de la Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
31
|
Guan Y, Yan Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022; 11:872. [PMID: 35269492 PMCID: PMC8909156 DOI: 10.3390/cells11050872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Healthspan is the period of our life without major debilitating diseases. In the modern world where unhealthy lifestyle choices and chronic diseases taper the healthspan, which lead to an enormous economic burden, finding ways to promote healthspan becomes a pressing goal of the scientific community. Exercise, one of humanity's most ancient and effective lifestyle interventions, appears to be at the center of the solution since it can both treat and prevent the occurrence of many chronic diseases. Here, we will review the current evidence and opinions about regular exercise promoting healthspan through enhancing the functionality of our organ systems and preventing diseases.
Collapse
Affiliation(s)
- Yuntian Guan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
32
|
Intermittent fasting, high-intensity interval training, or a combination of both have beneficial effects in obese mice with nonalcoholic fatty liver disease. J Nutr Biochem 2022; 104:108997. [DOI: 10.1016/j.jnutbio.2022.108997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
|
33
|
Abstract
Noncommunicable diseases are chronic diseases that contribute to death worldwide, but these diseases can be prevented and mitigated with regular exercise. Exercise activates signaling molecules and the transcriptional network to promote physiological adaptations, such as fiber type transformation, angiogenesis, and mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is a master regulator that senses the energy state, promotes metabolism for glucose and fatty acid utilization, and mediates beneficial cellular adaptations in many vital tissues and organs. This review focuses on the current, integrative understanding of the role of exercise-induced activation of AMPK in the regulation of system metabolism and promotion of health benefits.
Collapse
Affiliation(s)
- Hannah R. Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Zhen Yan
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; .,Departments of Medicine, Pharmacology, and Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
34
|
Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem 2022; 124:151844. [PMID: 35045377 DOI: 10.1016/j.acthis.2022.151844] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a dynamic organ in the endocrine system that can connect organs by secreting molecules and bioactive. Hence, adipose tissue really plays a pivotal role in regulating metabolism, inflammation, energy homeostasis, and thermogenesis. Disruption of hub bioactive molecules secretion such as adipokines leads to dysregulate metabolic communication between adipose tissue and other organs in non-communicable disorders. Moreover, a sedentary lifestyle may be a risk factor for adipose tissue function. Physical inactivity leads to fat tissue accumulation and promotes obesity, Type 2 diabetes, cardiovascular disease, neurodegenerative disease, fatty liver, osteoporosis, and inflammatory bowel disease. On the other hand, physical activity may ameliorate and protect the body against metabolic disorders, triggering thermogenesis, metabolism, mitochondrial biogenesis, β-oxidation, and glucose uptake. Furthermore, physical activity provides an inter-organ association and cross-talk between different tissues by improving adipose tissue function, reprogramming gene expression, modulating molecules and bioactive factors. Also, physical activity decreases chronic inflammation, oxidative stress and improves metabolic features in adipose tissue. The current review focuses on the beneficial effect of physical activity on the cardiovascular, locomotor, digestive, and nervous systems. In addition, we visualize protein-protein interactions networks between hub proteins involved in dysregulating metabolic induced by adipose tissue.
Collapse
Affiliation(s)
- Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
35
|
High-Intensity Interval Training Improves Physical Function, Prevents Muscle Loss, and Modulates Macrophage-Mediated Inflammation in Skeletal Muscle of Cerebral Ischemic Mice. Mediators Inflamm 2021; 2021:1849428. [PMID: 34845407 PMCID: PMC8627337 DOI: 10.1155/2021/1849428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Although skeletal muscle is the main effector organ largely accounting for disability after stroke, considerably less attention is paid to the secondary abnormalities of stroke-related skeletal muscle loss. It is necessary to explore the mechanism of muscle atrophy after stroke and further develop effective rehabilitation strategy. Here, we evaluated the effects of high-intensity interval (HIIT) versus moderate-intensity aerobic training (MOD) on physical function, muscle mass, and stroke-related gene expression profile of skeletal muscle. After the model of middle cerebral artery occlusion (MCAO) was successfully made, the blood lactate threshold corresponding speed (SLT) and maximum speed (Smax) were measured. Different intensity training protocols (MOD < SLT; SLT < HIIT < Smax) were carried out for 3 weeks beginning at 7 days after MCAO in the MOD and HIIT groups, respectively. We found that both HIIT and MOD prevented stroke-related gastrocnemius muscle mass loss in MCAO mice. HIIT was more beneficial than MOD for improvements in muscle strength, motor coordination, walking competency, and cardiorespiratory fitness. Furthermore, HIIT was superior to MOD in terms of reducing lipid accumulation, levels of IL-1β and IL-6 in paretic gastrocnemius, and improving peripheral blood CD4+/CD8+ T cell ratio, level of IL-10. Additionally, RNA-seq analysis revealed that the differentially expressed genes among HIIT, MOD, and MCAO groups were highly associated with signaling pathways involved in inflammatory response, more specifically the I-kappaB kinase/NF-kappaB signaling. Following the outcome, we further investigated the infiltrating immune cells abundant in paretic muscles. The results showed that HIIT modulated macrophage activation by downregulating CD86+ (M1 type) macrophages and upregulating CD163+ (M2 type) macrophages via inhibiting the TLR4/MyD88/NFκB signaling pathway and exerting an anti-inflammatory effect in paretic skeletal muscle. It is expected that these data will provide novel insights into the mechanisms and potential targets underlying muscle wasting in stroke.
Collapse
|
36
|
Pereira RM, da Cruz Rodrigues KC, Sant'Ana MR, Peruca GF, Anaruma CP, de Campos TDP, Dos Santos Canciglieri R, de Melo DG, Simabuco FM, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Moura LP. Short-term combined training reduces hepatic steatosis and improves hepatic insulin signaling. Life Sci 2021; 287:120124. [PMID: 34748760 DOI: 10.1016/j.lfs.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023]
Abstract
Hepatic steatosis is directly associated with hepatic inflammation and insulin resistance, which is correlated with hyperglycemia and type 2 diabetes mellitus (T2DM). Aerobic and strength training have been pointed out as efficient strategies against hepatic steatosis. However, little is known about the effects of the combination of those two protocols on hepatic steatosis. Therefore, this study aimed to evaluate the impact of short-term combined training (STCT) on glucose homeostasis and in the synthesis and oxidation of fat in the liver of obesity-induced mice with hepatic steatosis. Swiss mice were distributed into three groups: control lean (CTL), sedentary obese (OB), and combined training obese (CTO). The CTO group performed the STCT protocol, which consisted of strength and aerobic exercises in the same session. The protocol lasted seven days. The CTO group reduced the glucose levels and fatty liver when compared to the OB group. Interestingly, these results were observed even without reductions in body adiposity. CTO group also showed increased hepatic insulin sensitivity, with lower hepatic glucose production (HGP). STCT reduced the expression of the lipogenic genes Fasn and Scd1 and hepatic inflammation, as well as increased the ACC phosphorylation and the oxidative genes Cpt1a and Ppara, reverting the complications caused by obesity. Since this protocol increased lipid oxidation and reduced hepatic lipogenesis, regardless of body fat mass decrease, it can be considered an effective non-pharmacological strategy for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Rodrigo Martins Pereira
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Kellen Cristina da Cruz Rodrigues
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Marcella Ramos Sant'Ana
- Laboratory of Nutritional Genomics, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Guilherme Francisco Peruca
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Chadi Pellegrini Anaruma
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Motricity Sciences, Institute of Biosciences, São Paulo State University Julio de Mesquita Filho, Rio Claro, SP, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Thaís Dantis Pereira de Campos
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Raphael Dos Santos Canciglieri
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Diego Gomes de Melo
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leandro Pereira de Moura
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil.
| |
Collapse
|
37
|
Physical Activity, Dietary Patterns, and Glycemic Management in Active Individuals with Type 1 Diabetes: An Online Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179332. [PMID: 34501920 PMCID: PMC8431360 DOI: 10.3390/ijerph18179332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Individuals with type 1 diabetes (T1D) are able to balance their blood glucose levels while engaging in a wide variety of physical activities and sports. However, insulin use forces them to contend with many daily training and performance challenges involved with fine-tuning medication dosing, physical activity levels, and dietary patterns to optimize their participation and performance. The aim of this study was to ascertain which variables related to the diabetes management of physically active individuals with T1D have the greatest impact on overall blood glucose levels (reported as A1C) in a real-world setting. A total of 220 individuals with T1D completed an online survey to self-report information about their glycemic management, physical activity patterns, carbohydrate and dietary intake, use of diabetes technologies, and other variables that impact diabetes management and health. In analyzing many variables affecting glycemic management, the primary significant finding was that A1C values in lower, recommended ranges (<7%) were significantly predicted by a very-low carbohydrate intake dietary pattern, whereas the use of continuous glucose monitoring (CGM) devices had the greatest predictive ability when A1C was above recommended (≥7%). Various aspects of physical activity participation (including type, weekly time, frequency, and intensity) were not significantly associated with A1C for participants in this survey. In conclusion, when individuals with T1D are already physically active, dietary changes and more frequent monitoring of glucose may be most capable of further enhancing glycemic management.
Collapse
|
38
|
Karaküçük Y, Okudan N, Bozkurt B, Belviranlı M, Tobakçal F. Evaluation of the effect of high-intensity interval training on macular microcirculation via swept-source optical coherence tomography angiography in young football players. Indian J Ophthalmol 2021; 69:2334-2339. [PMID: 34427215 PMCID: PMC8544043 DOI: 10.4103/ijo.ijo_3079_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose: This study was conducted to evaluate the effect of high intensity interval training (HIIT) on macular microcirculation, measured by swept source optical coherence tomography angiography (ss OCTA) in young football players. Methods: Football players between 18–20 years old were included. After a detailed ophthalmological examination, physiological parameters, including height, body weight, body fat, systemic blood pressure, hematocrit values, oxygen saturation, and heart rate, were recorded. Intraocular pressure and ss OCTA parameters were measured one day before and the day after the high intensity interval training program using DRI OCT Triton (Topcon, Tokyo, Japan) between 11:00 am and 1:00 pm. Results: Fifteen participants completed the study. All were males with a mean age of 18.1 ± 0.4 years. Systolic and diastolic blood pressure and oxygen saturation did not change significantly (P > 0.05), while hematocrit levels increased remarkably (P = 0.049) after the HIIT program. Heart rates and intraocular pressure decreased (P = 0.003, P = 0.017, respectively). There was a significant increase in the central vessel density in deep capillary plexus (before: 18.7 ± 3.8%, after: 21.1 ± 4.5%) and central vessel density in choriocapillaris (before: 54.5 ± 2.8%, after 56.9 ± 2.2%) (P = 0.02, P = 0.02, respectively), although no changes were observed in other ss OCTA or in the central macular thickness and subfoveal choroidal thickness. Conclusion: A 6 week, high intensity interval training program with three exercise sessions per week seems not to alter mean superficial vascular densities, deep foveal avascular zone, and superficial foveal avascular zones, central macular thickness, or subfoveal choroidal thickness, while the central deep vascular density and central choriocapillaris vascular density increased remarkably among ss OCTA parameters.
Collapse
Affiliation(s)
- Yalçın Karaküçük
- Selcuk University, Faculty of Medicine, Department of Ophthalmology, Konya, Turkey
| | - Nilsel Okudan
- Selcuk University, Faculty of Medicine, Department of Physiology, Division of Sports Physiology, Konya, Turkey
| | - Banu Bozkurt
- Selcuk University, Faculty of Medicine, Department of Ophthalmology, Konya, Turkey
| | - Muaz Belviranlı
- Selcuk University, Faculty of Medicine, Department of Physiology, Division of Sports Physiology, Konya, Turkey
| | - Fatih Tobakçal
- Selcuk University, Faculty of Medicine, Department of Physiology, Division of Sports Physiology, Konya, Turkey
| |
Collapse
|
39
|
Maharjan BR, Martinez‐Huenchullan SF, Mclennan SV, Twigg SM, Williams PF. Exercise induces favorable metabolic changes in white adipose tissue preventing high-fat diet obesity. Physiol Rep 2021; 9:e14929. [PMID: 34405572 PMCID: PMC8371352 DOI: 10.14814/phy2.14929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
Diet and/or exercise are cost effective interventions to treat obesity. However, it is unclear if the type of exercise undertaken can prevent the onset of obesity and if it can act through different effects on fat depots. In this study we did not allow obesity to develop so we commenced the high-fat diet (HFD) and exercise programs concurrently and investigated the effect of endurance exercise (END) and high-intensity interval training (HIIT) on changes in cellular adipogenesis, thermogenesis, fibrosis, and inflammatory markers in three different fat depots, on a HFD and a chow diet. This was to assess the effectiveness of exercise to prevent the onset of obesity-induced changes. Mice fed with chow or HFD (45% kcal fat) were trained and performed either END or HIIT for 10 weeks (3 x 40 min sessions/week). In HFD mice, both exercise programs significantly prevented the increase in body weight (END: 17%, HIIT: 20%), total body fat mass (END: 46%, HIIT: 50%), increased lean mass as a proportion of body weight (Lean mass/BW) by 14%, and improved insulin sensitivity by 22%. Further evidence of the preventative effect of exercise was seen significantly decreased markers for adipogenesis, inflammation, and extracellular matrix accumulation in both subcutaneous adipose tissue (SAT) and epididymal adipose tissue (EPI). In chow, no such marked effects were seen with both the exercise programs on all the three fat depots. This study establishes the beneficial effect of both HIIT and END exercise in preventing metabolic deterioration, collagen deposition, and inflammatory responses in fat depots, resulting in an improved whole body insulin resistance in HFD mice.
Collapse
Affiliation(s)
- Babu R. Maharjan
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- Department of BiochemistryPatan Academy of Health SciencesSchool of MedicineLalitpurNepal
| | - Sergio F. Martinez‐Huenchullan
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- Faculty of MedicineSchool of Physical TherapyUniversidad Austral de ChileValdiviaChile
| | - Susan V. Mclennan
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- New South Wales Health PathologySydneyAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| | - Stephen M. Twigg
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| | - Paul F. Williams
- Greg Brown Diabetes & Endocrinology LaboratorySydney Medical SchoolUniversity of SydneySydneyAustralia
- New South Wales Health PathologySydneyAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
| |
Collapse
|
40
|
Zhu L, Liu J, Yu Y, Tian Z. Effect of high-intensity interval training on cardiometabolic risk factors in childhood obesity: a meta-analysis. J Sports Med Phys Fitness 2021; 61:743-752. [PMID: 33975429 DOI: 10.23736/s0022-4707.20.11329-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION This systematic review with meta-analysis aimed to quantify the effectiveness of high-intensity interval training (HIIT) on the cardiometabolic health of obese children and adolescents. EVIDENCE ACQUISITION Relevant articles were sourced from PubMed, Embase, the Web of Science, EBSCO, the Cochrane Library and China National Knowledge Infrastructure (CNKI). Randomized controlled trials were included if they employed participants aged 7-19 years. Outcomes included fasting glucose (FG), fasting insulin (FI), homeostasis model assessment-insulin resistance (HOMA-IR), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triacylglycerol (TG), total cholesterol (TC), systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured at baseline and postintervention and compared with those in the control group. Data analysis and synthesis were completed by Revman 5.3 software and Stata 12.0 software (StataCorp LLC., College Station, TX, USA). EVIDENCE SYNTHESIS Eight trials involving 379 participants were identified. HIIT significantly decreased the FI, HOMA-IR, TC, TG, LDL-c and SBP in participants with obesity. With regard to changes in blood glucose and lipids, participants who underwent HIIT showed great improvement in FI (mean difference: -3.09 µU/mL, 95% confidence interval [CI] -3.71 to -2.46, P<0.0001), HOMA-IR (mean difference: -0.64, 95% CI -0.82 to -0.46, P<0.0001), TG (mean difference: -0.21 mmol/L, 95% CI -0.31 to -0.10, P<0.0001) and LDL-c (mean difference: -0.35 mmol/L, 95% CI -0.48 to -0.22, P<0.001) than the control group. Similar results were found for SBP (mean difference: -3.61 mmHg, 95% CI -5.85 to -1.37, P=0.002). However, no significant differences in changes in FG, HDL-c and DBP were observed between HIIT and control groups. CONCLUSIONS HIIT can produce a positive effect on cardiometabolic risk factors in obese children and adolescents. HIIT may be an alternative and effective training method for managing childhood obesity.
Collapse
Affiliation(s)
- Lin Zhu
- Research Center for Physical Fitness and Health Promotion of Adolescent, Guangzhou Sport University, Guangzhou, China - .,Department of Sports and Health, Guangzhou Sport University, Guangzhou, China -
| | - Jingxin Liu
- Research Center for Physical Fitness and Health Promotion of Adolescent, Guangzhou Sport University, Guangzhou, China
| | - Yang Yu
- Research Center for Physical Fitness and Health Promotion of Adolescent, Guangzhou Sport University, Guangzhou, China.,Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Zheng Tian
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
41
|
Khalafi M, Symonds ME. The impact of high intensity interval training on liver fat content in overweight or obese adults: A meta-analysis. Physiol Behav 2021; 236:113416. [PMID: 33823178 DOI: 10.1016/j.physbeh.2021.113416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
Liver fat is a marker of the metabolic derangements associated with obesity for which exercise training is a potential therapy. We therefore performed a systematic meta-analysis to investigate the effect of high intensity interval training (HIIT) on liver fat content in overweight or obese adults with metabolic disorders. PubMed, Scopus, Web of Science and the Cochrane were searched up to October 2020 for HIIT vs. Control (CON) or HIIT vs. moderate intensity interval training (MICT) studies on liver fat content in overweight and obese individuals with metabolic disorders. Standardized mean differences (SMD) and 95% confidence intervals (95% CIs) were calculated. Ten studies involving 333 participants were included in the meta-analysis. Based on studies that directly compared HIIT and CON (6 studies), HIIT was beneficial for promoting a reduction in liver fat [-0.51 (95% CI: -0.85 to -0.17), p = 0.003]. However, there were no significant evidence for an effect of HIIT on liver fat [-0.07 (95% CI: -0.33 to 0.19), p = 0.59], when compared with MICT (7 studies). These results suggest that a HIIT could induce improvements in liver fat of overweight and obese adults with metabolic disorders despite no weight loss.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
| | - Michael E Symonds
- The Early Life Research Unit, Academic Division of Child Health and Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
42
|
Hossein Bagheri M, Azamian-Jazi A, Banitalebi E, Kazeminasab F, Hossein Nasr-Esfahani M. Both high-intensity interval training and low-intensity endurance training decrease intrahepatic lipid deposits via alterations of the expression of HIF-1α, HIG2 in a murine model of non alcoholic fatty liver disease (NAFLD). Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
High-Intensity Interval Training and α-Linolenic Acid Supplementation Improve DHA Conversion and Increase the Abundance of Gut Mucosa-Associated Oscillospira Bacteria. Nutrients 2021; 13:nu13030788. [PMID: 33673609 PMCID: PMC7997329 DOI: 10.3390/nu13030788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, a major public health problem, is the consequence of an excess of body fat and biological alterations in the adipose tissue. Our aim was to determine whether high-intensity interval training (HIIT) and/or α-linolenic acid supplementation (to equilibrate the n-6/n-3 polyunsaturated fatty acids (PUFA) ratio) might prevent obesity disorders, particularly by modulating the mucosa-associated microbiota. Wistar rats received a low fat diet (LFD; control) or high fat diet (HFD) for 16 weeks to induce obesity. Then, animals in the HFD group were divided in four groups: HFD (control), HFD + linseed oil (LO), HFD + HIIT, HFD + HIIT + LO. In the HIIT groups, rats ran on a treadmill, 4 days.week-1. Erythrocyte n-3 PUFA content, body composition, inflammation, and intestinal mucosa-associated microbiota composition were assessed after 12 weeks. LO supplementation enhanced α-linolenic acid (ALA) to docosahexaenoic acid (DHA) conversion in erythrocytes, and HIIT potentiated this conversion. Compared with HFD, HIIT limited weight gain, fat mass accumulation, and adipocyte size, whereas LO reduced systemic inflammation. HIIT had the main effect on gut microbiota β-diversity, but the HIIT + LO association significantly increased Oscillospira relative abundance. In our conditions, HIIT had a major effect on body fat mass, whereas HIIT + LO improved ALA conversion to DHA and increased the abundance of Oscillospira bacteria in the microbiota.
Collapse
|
44
|
Zeng J, Peng L, Zhao Q, Chen Q. Effects over 12 weeks of different types and durations of exercise intervention on body composition of young women with obesity. Sci Sports 2021. [DOI: 10.1016/j.scispo.2019.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Chao HH, Liao YH, Chou CC. Influences of Recreational Tennis-Playing Exercise Time on Cardiometabolic Health Parameters in Healthy Elderly: The ExAMIN AGE Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031255. [PMID: 33573269 PMCID: PMC7908508 DOI: 10.3390/ijerph18031255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Aging and chronic degeneration are the primary threats to cardiometabolic health in elderly populations. Regular appropriate exercise would benefit the advanced aging population. PURPOSE This study investigates whether the degree of weekly tennis participation exhibits differences in primary cardiometabolic parameters, including arterial stiffness, inflammation, and metabolic biomarkers in elderly tennis players. METHODS One hundred thirty-five long-term participants in elder tennis (>50 years old) were initially screened. Twenty-six eligible and voluntary subjects were divided into high tennis time group (HT) (14 ± 1.3 h/week) and low tennis time group (LT) (4.5 ± 0.7 h/week) by stratification analysis based on the amount of tennis playing activity time. The brachial-ankle pulse wave velocity (baPWV), blood pressure, ankle-brachial index (ABI), blood metabolic biomarkers, and insulin resistance were measured to compare the difference between HT and LT groups. RESULTS The baPWV was significantly lower in the HT group than that in the LT group (1283.92 ± 37.01 vs. 1403.69 ± 53.71 cm/s, p < 0.05). We also found that the HT insulin-resistant homeostasis model assessment (HOMA-IR) was significantly lower than that of LT (1.41 ± 0.11 vs. 2.27 ± 0.48 μIU/mL, p < 0.05). However, the blood lipid biomarkers (glucose, cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride) were not statistical different between HT and LT groups (p > 0.05). CONCLUSION We demonstrated that under the condition of similar daily physical activity level, elderly with a higher time of tennis-playing (HT group) exhibited relatively lower arterial stiffness (lower PWV) and lower insulin resistance compared to those with lower time tennis-playing (LT).
Collapse
Affiliation(s)
- Hsiao-Han Chao
- Department of Athletics, National Taiwan University, Taipei 10617, Taiwan;
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan;
| | - Chun-Chung Chou
- Physical Education Office, National Taipei University of Technology, Taipei 10608, Taiwan
- Correspondence: ; Tel.: +886-2-27712171 (ext. 3332)
| |
Collapse
|
46
|
Goldberg Y, Fainstein N, Zaychik Y, Hamdi L, Segal S, Nabat H, Touloumi O, Zoidou S, Grigoriadis N, Hoffman JR, Katz A, Ben-Hur T, Einstein O. Continuous and interval training attenuate encephalomyelitis by separate immunomodulatory mechanisms. Ann Clin Transl Neurol 2020; 8:190-200. [PMID: 33285042 PMCID: PMC7818088 DOI: 10.1002/acn3.51267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Accepted: 11/14/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Studies have reported beneficial effects of exercise training on autoimmunity, and specifically on multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, it is unknown whether different training paradigms affect disease course via shared or separate mechanisms. OBJECTIVE To compare the effects and mechanism of immune modulation of high intensity continuous training (HICT) versus high intensity interval training (HIIT) on systemic autoimmunity in EAE. METHODS We used the proteolipid protein (PLP)-induced transfer EAE model to examine training effects on the systemic autoimmune response. Healthy mice performed HICT or HIIT by running on a treadmill. Lymph-node (LN)-T cells from PLP-immunized trained- versus sedentary donor mice were transferred to naïve recipients and EAE clinical and pathological severity were assessed. LN cells derived from donor trained and sedentary PLP-immunized mice were analyzed in vitro for T-cell activation and proliferation, immune cell profiling, and cytokine mRNA levels and cytokine secretion measurements. RESULTS Both HICT and HIIT attenuated the encephalitogenicity of PLP-reactive T cells, as indicated by reduced EAE clinical severity and inflammation and tissue pathology in the central nervous system, following their transfer into recipient mice. HICT caused a marked inhibition of PLP-induced T-cell proliferation without affecting the T-cell profile. In contrast, HIIT did not alter T-cell proliferation, but rather inhibited polarization of T cells into T-helper 1 and T-helper 17 autoreactive populations. INTERPRETATION HICT and HIIT attenuate systemic autoimmunity and T cell encephalitogenicity by distinct immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Yifat Zaychik
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Greece
| | - Sofia Zoidou
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Greece
| | | | - Jay R Hoffman
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
47
|
Joseph A, Parvathy S, Varma KK, Nandakumar A. Four weeks exercise training enhanced the hepatic insulin sensitivity in high fat- and high carbohydrate-diet fed hyperinsulinemic rats. J Diabetes Metab Disord 2020; 19:1583-1592. [PMID: 33520854 DOI: 10.1007/s40200-020-00694-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Aim Hyperinsulinemia is considered the primary defect underlying the development of type 2 diabetes. The liver is essential for the regular glucose homeostasis. In this study, we examined the effect of physical training on the insulin signaling, oxidative stress enzymes and Glucose-6-phosphatase(G6Pase) activity in the liver of Wistar rats. Methods Adult male Wistar rats were divided into Control diet group(C), High carbohydrate diet(HCD), High fat diet(HFD), HCD and HFD with training(HCD Ex & HFD Ex). HFD Ex and HCD Ex were trained on a small animal treadmill running at 20 m/min for 30 min, 5 days/wk. The present work investigated the effect of training on hepatic insulin receptor(InsR) signaling events, oxidative stress marker expressions and G6Pase activity in hyperinsulinemic rats. Results High carbohydrate and fat feeding led to hyperinsulinemic status with increased hepatic G6Pase activity and impaired phosphorylation of insulin receptor substrate 1(IRS1) and reduced expression of antioxidant enzymes.Training significantly reduced hepatic G6Pase activity, upregulated phosphoinositide 3 kinase(PI3K) docking site phosphorylation and downregulated the negative IRS1 phosphorylations thereby increasing the glucose transporter(GLUT) expressions (aa(P < 0.001) when compared to HFD, b(P < 0.01),bb (P < 0.001 when compared to HCD). Anti oxidant enzymes like CAT, SOD, eNOS expression were increased with reduction in the expression of inflammatory enzymes like TNF-α and COX-2 (*(P < 0.05),**(P < 0.01),***(P < 0.001) when compared to control, †(P < 0.05),††(P < 0.01),†††(P < 0.001) when compared to HFD and HCD). Conclusion Thus, our study shows that four weeks training enhanced the hepatic insulin sensitivity in high fat and high carbohydrate-diet fed hyperinsulinemic rats. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-020-00694-y.
Collapse
Affiliation(s)
- Anu Joseph
- MIMS Research Foundation, Mankavu P.O., Calicut, Kerala 673007 India
| | - S Parvathy
- MIMS Research Foundation, Mankavu P.O., Calicut, Kerala 673007 India
| | | | | |
Collapse
|
48
|
Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proc Natl Acad Sci U S A 2020; 117:30335-30343. [PMID: 33199621 DOI: 10.1073/pnas.2016112117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Implementation of regular physical activity helps in the maintenance of a healthy metabolic profile both in humans and mice through molecular mechanisms not yet completely defined. Here, we show that high-intensity interval training (HIIT) modifies the microRNA (miRNA) profile of circulating exosomes in mice, including significant increases in miR-133a and miR-133b Importantly, treatment of sedentary mice with exosomes isolated from the plasma of trained mice improves glucose tolerance, insulin sensitivity, and decreases plasma levels of triglycerides. Moreover, exosomes isolated from the muscle of trained mice display similar changes in miRNA content, and their administration to sedentary mice reproduces the improvement of glucose tolerance. Exosomal miRNAs up-regulated by HIIT target insulin-regulated transcription factor forkhead box O1 (FoxO1) and, accordingly, expression of FoxO1 is decreased in the liver of trained and exosome-treated mice. Treatment with exosomes transfected with a miR-133b mimic or with a specific siRNA targeting FoxO1 recapitulates the metabolic effects observed in trained mice. Overall, our data suggest that circulating exosomes released by the muscle carry a specific miRNA signature that is modified by exercise and induce expression changes in the liver that impact whole-body metabolic profile.
Collapse
|
49
|
Stine JG, Xu D, Schmitz K, Sciamanna C, Kimball SR. Exercise Attenuates Ribosomal Protein Six Phosphorylation in Fatty Liver Disease. Dig Dis Sci 2020; 65:3238-3243. [PMID: 32239376 PMCID: PMC7529701 DOI: 10.1007/s10620-020-06226-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease worldwide. Nonalcoholic steatohepatitis (NASH), is a more severe type of NAFLD. Exercise improves NASH, by reversing steatosis, and may arrest fibrosis. However, the mechanisms underlying these interactions are unknown. AMP-activated protein kinase (AMPK) is a fuel-sensing enzyme that is activated by energy stress. Mammalian target of rapamycin in complex 1 (mTORC1) is a nutrient sensor that regulates protein synthesis. In NASH, AMPK activity is low and mTORC1 is high. In healthy persons, exercise activates AMPK and suppresses mTORC1. We examined the effects of exercise on hepatic ribosomal protein S6 phosphorylation, a downstream target of AMPK and mTORC1 in patients with NASH. METHODS Three subjects with biopsy-proven NASH underwent a structured, 20-week aerobic exercise intervention, five-days a week for 30-min at a moderate intensity (40-55% of VO2max). Immunofluorescence staining for rpS6 phosphorylation in hepatic tissue was quantified by ImageJ software. RESULTS Following 20-weeks of aerobic exercise, rpS6 levels were significantly attenuated (3.9 ± 1.9 pre-exercise vs. 1.4 +/0.4 post-exercise, p = 0.04). CONCLUSIONS These findings suggest exercise modulates the AMPK/mTORC1 pathway in patients with NASH and may guide the design of future studies into the mechanism of how exercise improves NASH and possibly reverses fibrosis.
Collapse
Affiliation(s)
- Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Public Health Sciences, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA.
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA.
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Dandan Xu
- Department of Cellular and Molecular Physiology, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
| | - Kathryn Schmitz
- Department of Public Health Sciences, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Kinesiology, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
- Department of Physical Medicine and Rehabilitation, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Christopher Sciamanna
- Department of Public Health Sciences, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
| |
Collapse
|
50
|
Zou Y, Qi Z. Understanding the Role of Exercise in Nonalcoholic Fatty Liver Disease: ERS-Linked Molecular Pathways. Mediators Inflamm 2020; 2020:6412916. [PMID: 32774148 PMCID: PMC7397409 DOI: 10.1155/2020/6412916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.
Collapse
Affiliation(s)
- Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|