1
|
Qiao P, Zhao M, Zhao J, Wen J, Zhao C, Zhang M. Unveiling the camelina MBOAT gene family: Phylogenetic insights and regulatory landscape. Gene 2025; 936:149085. [PMID: 39542282 DOI: 10.1016/j.gene.2024.149085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The membrane-bound O-acyltransferase (MBOAT) gene family comprises enzymes responsible for transferring acyl groups to various lipid molecules. Some members of the MBOAT gene family and their functions have been extensively studied in the model plant Arabidopsis. However, research on the MBOAT gene family in camelina is still limited. In this study, 54 MBOATs were identified on 17 chromosomes and one unidentified scaffold in camelina, including seven newly identified genes. A total of 149 MBOATs were identified in 10 other species. Six subgroups of these MBOATs with different conservation were classified by phylogenetic analysis, showing diversification between monocots and dicots. Detailed analysis of the motif composition, evolutionary relationships, and gene structures of CsaMBOATs are presented. The results of the syntenic analysis suggest that the evolution of CsaMBOAT gene family is primarily driven by segmental and tandem duplications, and that there is a stronger collinearity within dicots. In addition, analysis of CsaMBOAT gene promoter cis-elements reveals a possible transcriptional regulation and tissue-specific expression, highlighting potential role in plant stress responses and hormone signaling. Furthermore, both the transcriptome and RT-qPCR data revealed the changes in the expression levels of DGAT1 during salt stress treatment. Subsequent analyses indicated that DGAT1 influenced the ratio of fatty acid fractions in the plants. Importantly, a large number of transcription factors involved in the regulation of CsaMBOAT gene expression were identified by WGCNA analysis, and the transcriptional data confirmed that the NAC032 and CAMMTA6 genes play a role upstream of DGAT1. This study not only identified the members of the MBOAT in camelina, but also provided insights and clues into its regulatory mechanisms.
Collapse
Affiliation(s)
- Pengfang Qiao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maoqiu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialiang Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayin Wen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
3
|
Mukhametgalieva AR, Nemtarev AV, Sykaev VV, Pashirova TN, Masson P. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation. Int J Mol Sci 2023; 24:10472. [PMID: 37445649 DOI: 10.3390/ijms241310472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cholinesterases (ChEs) display a non-michaelian behavior with positively charged substrates. In the steady-state rate equation, the b factor describes this behavior: if b > 1 there is substrate activation, if b < 1 there is substrate inhibition. The mechanistic significance of the b factor was investigated to determine whether this behavior depends on acylation, deacylation or on both steps. Kinetics of human acetyl- (AChE) and butyryl-cholinesterase (BChE) were performed under steady-state conditions and using a time-course of complete substrate hydrolysis. For the hydrolysis of short acyl(thio)esters, where acylation and deacylation are partly rate-limiting, steady-state kinetic analysis could not decide which step determines b. However, the study of the hydrolysis of an arylacylamide, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), where acetylation is rate-limiting, showed that b depends on the acylation step. The magnitude of b and opposite b values between AChE and BChE for the hydrolysis of acetyl(thio)- versus benzoyl-(thio) esters, then indicated that the productive adjustment of substrates in the active center at high concentration depends on motions of both the Ω and the acyl-binding loops. Benzoylcholine was shown to be a poor substrate of AChE, and steady-state kinetics showed a sudden inhibition at high concentration, likely due to the non-dissociation of hydrolysis products. The poor catalytic hydrolysis of this bulky ester by AChE illustrates the importance of the fine adjustment of substrate acyl moiety in the acyl-binding pocket. Molecular modeling and QM/MM simulations should definitively provide evidence for this statement.
Collapse
Affiliation(s)
- Aliya R Mukhametgalieva
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 Ul. Kremlevskaya, 420008 Kazan, Russia
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Viktor V Sykaev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 Ul. Kremlevskaya, 420008 Kazan, Russia
| |
Collapse
|
4
|
Shi JH, Zhao B, Song LL, Song YQ, Sun MR, Tian T, Chen HY, Song YQ, Sun JM, Ge GB. Chalcone derivatives as novel, potent and selective inhibitors against human Notum: Structure–activity relationships and biological evaluations. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
6
|
Functional regulation of Wnt protein through post-translational modifications. Biochem Soc Trans 2022; 50:1797-1808. [DOI: 10.1042/bst20220735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Wnts are lipid-modified signaling glycoproteins present in all metazoans that play key roles in development and homeostasis. Post-translational modifications of Wnts regulate their function. Wnts have a unique post-translational modification, O-linked palmitoleation, that is absolutely required for their function. This Wnt-specific modification occurs during Wnt biosynthesis in the endoplasmic reticulum (ER), catalyzed by the O-acyltransferase Porcupine (PORCN). Palmitoleation is required for Wnt to bind to its transporter Wntless (WLS/Evi) as well as to its receptor Frizzled (FZD). Recent structural studies have illustrated how PORCN recognizes its substrates, and how drugs inhibit this. The abundance of WLS is tightly regulated by intracellular recycling and ubiquitylation-mediated degradation in the ER. The function of Wnt glycosylation is less well understood, and the sites and types of glycosylation are not largely conserved among different Wnts. In polarized tissues, the type of glycans can determine whether the route of trafficking is apical or basolateral. In addition, pairing of the 24 highly conserved cysteines in Wnts to form disulfide bonds is critical in maintaining proper structure and activities. Extracellularly, the amino terminus of a subset of Wnts can be cleaved by a dedicated glycosylphosphatidylinositol (GPI)-anchored metalloprotease TIKI, resulting in the inactivation of these Wnt proteins. Additionally, NOTUM is a secreted extracellular carboxylesterase that removes the palmitoleate moiety from Wnt, antagonizing its activity. In summary, Wnt signaling activity is controlled at multiple layers by post-translational modifications.
Collapse
|
7
|
Zhao Y, Mahy W, Willis NJ, Woodward HL, Steadman D, Bayle ED, Atkinson BN, Sipthorp J, Vecchia L, Ruza RR, Harlos K, Jeganathan F, Constantinou S, Costa A, Kjær S, Bictash M, Salinas PC, Whiting P, Vincent JP, Fish PV, Jones EY. Structural Analysis and Development of Notum Fragment Screening Hits. ACS Chem Neurosci 2022; 13:2060-2077. [PMID: 35731924 PMCID: PMC9264368 DOI: 10.1021/acschemneuro.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 μM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 μM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - William Mahy
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Nicky J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Elliott D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - James Sipthorp
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Luca Vecchia
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Reinis R. Ruza
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Karl Harlos
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Fiona Jeganathan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefan Constantinou
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Artur Costa
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Svend Kjær
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Patricia C. Salinas
- Department
of Cell and Developmental Biology, Laboratory for Molecular and Cellular
Biology, University College London, London WC1E 6BT, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| |
Collapse
|
8
|
Willis N, Mahy W, Sipthorp J, Zhao Y, Woodward HL, Atkinson BN, Bayle ED, Svensson F, Frew S, Jeganathan F, Monaghan A, Benvegnù S, Jolly S, Vecchia L, Ruza RR, Kjær S, Howell S, Snijders AP, Bictash M, Salinas PC, Vincent JP, Jones EY, Whiting P, Fish PV. Design of a Potent, Selective, and Brain-Penetrant Inhibitor of Wnt-Deactivating Enzyme Notum by Optimization of a Crystallographic Fragment Hit. J Med Chem 2022; 65:7212-7230. [PMID: 35536179 PMCID: PMC9150124 DOI: 10.1021/acs.jmedchem.2c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/26/2022]
Abstract
Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.
Collapse
Affiliation(s)
- Nicky
J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - William Mahy
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - James Sipthorp
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Elliott D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Sarah Frew
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Fiona Jeganathan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Amy Monaghan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefano Benvegnù
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Sarah Jolly
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Luca Vecchia
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Reinis R. Ruza
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Svend Kjær
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Steven Howell
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | | | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Patricia C. Salinas
- Department
of Cell and Developmental Biology, Laboratory for Molecular and Cellular
Biology, University College London, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| |
Collapse
|
9
|
Bukhari SNA. An insight into the multifunctional role of ghrelin and structure activity relationship studies of ghrelin receptor ligands with clinical trials. Eur J Med Chem 2022; 235:114308. [PMID: 35344905 DOI: 10.1016/j.ejmech.2022.114308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Ghrelin is a multifunctional gastrointestinal acylated peptide, primarily synthesized in the stomach and regulates the secretion of growth hormone and energy homeostasis. It plays a central role in modulating the diverse biological, physiological and pathological functions in vertebrates. The synthesis of ghrelin receptor ligands after the finding of growth hormone secretagogue developed from Met-enkephalin led to reveal the endogenous ligand ghrelin and the receptors. Subsequently, many peptides, small molecules and peptidomimetics focusing on the ghrelin receptor, GHS-R1a, were derived. In this review, the key features of ghrelin's structure, forms, its bio-physiological functions, pathological roles and therapeutic potential have been highlighted. A few peptidomimetics and pseudo peptide synthetic perspectives have also been discussed to make ghrelin receptor ligands, clinical trials and their success.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 2014, Saudi Arabia.
| |
Collapse
|
10
|
Sassi M, Morgan AH, Davies JS. Ghrelin Acylation-A Post-Translational Tuning Mechanism Regulating Adult Hippocampal Neurogenesis. Cells 2022; 11:cells11050765. [PMID: 35269387 PMCID: PMC8909677 DOI: 10.3390/cells11050765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Adult hippocampal neurogenesis—the generation of new functional neurones in the adult brain—is impaired in aging and many neurodegenerative disorders. We recently showed that the acylated version of the gut hormone ghrelin (acyl-ghrelin) stimulates adult hippocampal neurogenesis while the unacylated form of ghrelin inhibits it, thus demonstrating a previously unknown function of unacyl-ghrelin in modulating hippocampal plasticity. Analysis of plasma samples from Parkinson’s disease patients with dementia demonstrated a reduced acyl-ghrelin:unacyl-ghrelin ratio compared to both healthy controls and cognitively intact Parkinson’s disease patients. These data, from mouse and human studies, suggest that restoring acyl-ghrelin signalling may promote the activation of pathways to support memory function. In this short review, we discuss the evidence for ghrelin’s role in regulating adult hippocampal neurogenesis and the enzymes involved in ghrelin acylation and de-acylation as targets to treat mood-related disorders and dementia.
Collapse
|
11
|
Steadman D, Atkinson BN, Zhao Y, Willis NJ, Frew S, Monaghan A, Patel C, Armstrong E, Costelloe K, Magno L, Bictash M, Jones EY, Fish PV, Svensson F. Virtual Screening Directly Identifies New Fragment-Sized Inhibitors of Carboxylesterase Notum with Nanomolar Activity. J Med Chem 2022; 65:562-578. [PMID: 34939789 DOI: 10.1021/acs.jmedchem.1c01735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notum is a negative regulator of Wnt signaling acting through the hydrolysis of a palmitoleoylate ester, which is required for Wnt activity. Inhibitors of Notum could be of use in diseases where dysfunctional Notum activity is an underlying cause. A docking-based virtual screen (VS) of a large commercial library was used to shortlist 952 compounds for experimental validation as inhibitors of Notum. The VS was successful with 31 compounds having an IC50 < 500 nM. A critical selection process was then applied with two clusters and two singletons (1-4d) selected for hit validation. Optimization of 4d guided by structural biology identified potent inhibitors of Notum activity that restored Wnt/β-catenin signaling in cell-based models. The [1,2,4]triazolo[4,3-b]pyradizin-3(2H)-one series 4 represent a new chemical class of Notum inhibitors and the first to be discovered by a VS campaign. These results demonstrate the value of VS with well-designed docking models based on X-ray structures.
Collapse
Affiliation(s)
- David Steadman
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Benjamin N Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, OxfordOX3 7BN, U.K
| | - Nicky J Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Sarah Frew
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Amy Monaghan
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Chandni Patel
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Emma Armstrong
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Kathryn Costelloe
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Magda Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, OxfordOX3 7BN, U.K
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| |
Collapse
|
12
|
Choi RB, Bullock WA, Hoggatt AM, Horan DJ, Pemberton EZ, Hong JM, Zhang X, He X, Robling AG. Notum Deletion From Late-Stage Skeletal Cells Increases Cortical Bone Formation and Potentiates Skeletal Effects of Sclerostin Inhibition. J Bone Miner Res 2021; 36:2413-2425. [PMID: 34223673 PMCID: PMC8688238 DOI: 10.1002/jbmr.4411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Wnt signaling plays a vital role in the cell biology of skeletal patterning, differentiation, and maintenance. Notum is a secreted member of the α/β-hydrolase superfamily that hydrolyzes the palmitoleoylate modification on Wnt proteins, thereby disrupting Wnt signaling. As a secreted inhibitor of Wnt, Notum presents an attractive molecular target for improving skeletal health. To determine the cell type of action for Notum's effect on the skeleton, we generated mice with Notum deficiency globally (Notum-/- ) and selectively (Notumf/f ) in limb bud mesenchyme (Prx1-Cre) and late osteoblasts/osteocytes (Dmp1-Cre). Late-stage deletion induced increased cortical bone properties, similar to global mutants. Notum expression was enhanced in response to sclerostin inhibition, so dual inhibition (Notum/sclerostin) was also investigated using a combined genetic and pharmacologic approach. Co-suppression increased cortical properties beyond either factor alone. Notum suppressed Wnt signaling in cell reporter assays, but surprisingly also enhanced Shh signaling independent of effects on Wnt. Notum is an osteocyte-active suppressor of cortical bone formation that is likely involved in multiple signaling pathways important for bone homeostasis © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Roy B. Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Whitney A. Bullock
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - April M. Hoggatt
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel J. Horan
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily Z. Pemberton
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jung Min Hong
- Division of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Xinjun Zhang
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Xi He
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis, Indianapolis, IN, USA
- Roudebush VA Medical Center, Indianapolis, IN USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| |
Collapse
|
13
|
Resh MD. Open Biology: overview for special issue on dynamics of protein fatty acylation. Open Biol 2021; 11:210228. [PMID: 34520700 PMCID: PMC8440031 DOI: 10.1098/rsob.210228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Fatty acylation is a widespread form of protein modification that occurs on specific intracellular and secreted proteins. Beyond increasing hydrophobicity and the affinity of the modified protein for lipid bilayers, covalent attachment of a fatty acid exerts effects on protein localization, inter- and intramolecular interactions and signal transduction. As such, research into protein fatty acylation has been embraced by an extensive community of biologists. This special issue highlights advances at the forefront of the field, by focusing on two families of enzymes that catalyse post-translational protein fatty acylation, zDHHC palmitoyl acyltransferases and membrane-bound O-acyl transferases, and signalling pathways regulated by their fatty acylated protein substrates. The collected contributions catalogue the tremendous progress that has been made in enzyme and substrate identification. In addition, articles in this special issue provide insights into the pivotal functions of fatty acylated proteins in immune cell, insulin and EGF receptor-mediated signalling pathways. As selective inhibitors of protein fatty acyltransferases are generated, the future holds great promise for therapeutic targeting of fatty acyltransferases that play key roles in human disease.
Collapse
Affiliation(s)
- Marilyn D. Resh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10075, USA
| |
Collapse
|
14
|
Zhao Y, Svensson F, Steadman D, Frew S, Monaghan A, Bictash M, Moreira T, Chalk R, Lu W, Fish PV, Jones EY. Structural Insights into Notum Covalent Inhibition. J Med Chem 2021; 64:11354-11363. [PMID: 34292747 PMCID: PMC8365597 DOI: 10.1021/acs.jmedchem.1c00701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Indexed: 12/28/2022]
Abstract
The carboxylesterase Notum hydrolyzes a palmitoleate moiety from Wingless/Integrated(Wnt) ligands and deactivates Wnt signaling. Notum inhibitors can restore Wnt signaling which may be of therapeutic benefit for pathologies such as osteoporosis and Alzheimer's disease. We report the identification of a novel class of covalent Notum inhibitors, 4-(indolin-1-yl)-4-oxobutanoate esters. High-resolution crystal structures of the Notum inhibitor complexes reveal a common covalent adduct formed between the nucleophile serine-232 and hydrolyzed butyric esters. The covalent interaction in solution was confirmed by mass spectrometry analysis. Inhibitory potencies vary depending on the warheads used. Mechanistically, the resulting acyl-enzyme intermediate carbonyl atom is positioned at an unfavorable angle for the approach of the active site water, which, combined with strong hydrophobic interactions with the enzyme pocket residues, hinders the intermediate from being further processed and results in covalent inhibition. These insights into Notum catalytic inhibition may guide development of more potent Notum inhibitors.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Sarah Frew
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Amy Monaghan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Tiago Moreira
- Centre
for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Rod Chalk
- Centre
for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Weixian Lu
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| |
Collapse
|
15
|
Davis TR, Pierce MR, Novak SX, Hougland JL. Ghrelin octanoylation by ghrelin O-acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biol 2021; 11:210080. [PMID: 34315274 PMCID: PMC8316800 DOI: 10.1098/rsob.210080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.
Collapse
Affiliation(s)
- Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Mariah R Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Sadie X Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA.,BioInspired Syracuse, Syracuse University, Syracuse, NY 13244 USA
| |
Collapse
|
16
|
Zhao Y, Jolly S, Benvegnu S, Jones EY, Fish PV. Small-molecule inhibitors of carboxylesterase Notum. Future Med Chem 2021; 13:1001-1015. [PMID: 33882714 PMCID: PMC8130783 DOI: 10.4155/fmc-2021-0036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Notum has recently been identified as a negative regulator of Wnt signaling through the removal of an essential palmitoleate group from Wnt proteins. There are emerging reports that Notum plays a role in human disease, with published data suggesting that targeting Notum could represent a new therapeutic approach for treating cancer, osteoporosis and neurodegenerative disorders. Complementary hit-finding strategies have been applied with successful approaches that include high-throughput screening, activity-based protein profiling, screening of fragment libraries and virtual screening campaigns. Structural studies are accelerating the discovery of new inhibitors of Notum. Three fit-for-purpose examples are LP-922056, ABC99 and ARUK3001185. The application of these small-molecule inhibitors is helping to further advance an understanding of the role Notum plays in human disease.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Sarah Jolly
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Stefano Benvegnu
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|