1
|
Binayi F, Saeidi B, Farahani F, Sadat Izadi M, Eskandari F, Azarkish F, Sahraei M, Ghasemi R, Khodagholi F, Zardooz H. Sustained feeding of a diet high in fat resulted in a decline in the liver's insulin-degrading enzyme levels in association with the induction of oxidative and endoplasmic reticulum stress in adult male rats: Evaluation of 4-phenylbutyric acid. Heliyon 2024; 10:e32804. [PMID: 38975085 PMCID: PMC11226834 DOI: 10.1016/j.heliyon.2024.e32804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The current study explored the impact of high fat diet (HFD) on hepatic oxidative and endoplasmic reticulum (ER) stress and its insulin degrading enzyme (IDE) content with the injection of 4-phenyl butyric acid (4-PBA) in adult male rats. Following the weaning period, male offspring were distributed among six distinct groups. The corresponding diet was used for 20 weeks, subsequently 4-PBA was administered for three consecutive days. Plasma glucose and insulin levels, HOMA-β (homeostasis model assessment of β-cell), hepatic ER and oxidative stress biomarkers and IDE protein content were assessed. Long-term ingestion of HFD (31 % cow butter) induced oxidative and ER stress in the liver tissue. Accordingly, a rise in the malondialdehyde (MDA) content and catalase enzyme activity and a decrease in the glutathione (GSH) content were detected within the liver of the HFD and HFD + DMSO groups. Consumption of this diet elevated the liver expression of binding immunoglobulin protein (BIP) and C/enhancer-binding protein homologous protein (CHOP) levels while reduced its IDE content. The HOMA-β decreased significantly. The injection of the 4-PBA moderated all the induced changes. Findings from this study indicated that prolonged HFD consumption led to a reduction in plasma insulin levels, likely attributed to pancreatic β cell malfunction, as evidenced by a decline in the HOMA-β index. Also, the HFD appears to have triggered oxidative and ER stress in the liver, along with a decrease in its IDE content.
Collapse
Affiliation(s)
- Fateme Binayi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Saeidi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Farahani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Sadat Izadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Eskandari
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Azarkish
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sahraei
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Bai J, Tan X, Tang S, Liu X, Shao L, Wang C, Huang L. Citrus p-Synephrine Improves Energy Homeostasis by Regulating Amino Acid Metabolism in HFD-Induced Mice. Nutrients 2024; 16:248. [PMID: 38257140 PMCID: PMC10818793 DOI: 10.3390/nu16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
p-Synephrine is a common alkaloid widely distributed in citrus fruits. However, the effects of p-synephrine on the metabolic profiles of individuals with energy abnormalities are still unclear. In the study, we investigated the effect of p-synephrine on energy homeostasis and metabolic profiles using a high fat diet (HFD)-induced mouse model. We found that p-synephrine inhibited the gain in body weight, liver weight and white adipose tissues weight induced by HFD. p-Synephrine supplementation also reduced levels of serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) but not to a statistically significant degree. Histological analysis showed that HFD induced excessive lipid accumulation and glycogen loss in the liver and adipocyte enlargement in perirenal fat tissue, while p-synephrine supplementation reversed the changes induced by HFD. Moreover, HFD feeding significantly increased mRNA expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and reduced the mRNA expression level of interleukin-10 (IL-10) compared to the control group, while p-synephrine supplementation significantly reversed these HFD-induced changes. Liver and serum metabolomic analysis showed that p-synephrine supplementation significantly altered small molecule metabolites in liver and serum in HFD mice and that the changes were closely associated with improvement of energy homeostasis. Notably, amino acid metabolism pathways, both in liver and serum samples, were significantly enriched. Our study suggests that p-synephrine improves energy homeostasis probably by regulating amino acid metabolism in HFD mice, which provides a novel insight into the action mechanism of p-synephrine modulating energy homeostasis.
Collapse
Affiliation(s)
- Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linzi Shao
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Chen Wang
- National Citrus Engineering Research Center, Chongqing 400700, China
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| |
Collapse
|
3
|
Yu W, Qiu S, Li M, Yao Y, Zhao Y, Wei W, Zhang L, Chen J. Vitamin K3 promotes CCL5 expression to recruit preadipocytes deposition to skeletal muscle. Biochem Biophys Res Commun 2023; 686:149162. [PMID: 37924666 DOI: 10.1016/j.bbrc.2023.149162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Intramuscular fat (IMF), also known as ectopic fat deposits in skeletal muscle. Researches of IMF mainly focus on increasing the number and size of intramuscular adipocytes in situ. However, recent studies have shown that chemokines secreted by skeletal muscle recruit adipocytes to increase intramuscular fat content. Chemokine ligand 5 (CCL5), a member of chemokine family, is involved in the regulation of cell migration, inflammatory responses, and energy metabolism. In this study, we determined Vitamin K3 (VK3) enhanced Ccl5 transcription and expression, thus resulting in increased preadipocyte migration. VK3-injected vastus lateralis (VL) was observed an increased CCL5 concentration and IMF deposition, whereas blockade of the CCL5/CCR5 axis decreased IMF deposition.VK3 treatment also increased the body weight and VL ratio in mice. In summary, VK3, which targets CCL5, is expected to be a novel pharmacological regulator for promoting IMF content.
Collapse
Affiliation(s)
- Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengda Qiu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|