1
|
Reichenbach A, Dempsey H, Andrews ZB. Metabolic sensing in AgRP regulates sucrose preference and dopamine release in the nucleus accumbens. J Neuroendocrinol 2024; 36:e13389. [PMID: 38599683 DOI: 10.1111/jne.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Hunger increases the motivation for calorie consumption, often at the expense of low-taste appeal. However, the neural mechanisms integrating calorie-sensing with increased motivation for calorie consumption remain unknown. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus sense hunger, and the ingestion of caloric solutions promotes dopamine release in the absence of sweet taste perception. Therefore, we hypothesised that metabolic-sensing of hunger by AgRP neurons would be essential to promote dopamine release in the nucleus accumbens in response to caloric, but not non-caloric solutions. Moreover, we examined whether metabolic sensing in AgRP neurons affected taste preference for bitter solutions under conditions of energy need. Here we show that impaired metabolic sensing in AgRP neurons attenuated nucleus accumbens dopamine release in response to sucrose, but not saccharin, consumption. Furthermore, metabolic sensing in AgRP neurons was essential to distinguish nucleus accumbens dopamine response to sucrose consumption when compared with saccharin. Under conditions of hunger, metabolic sensing in AgRP neurons increased the preference for sucrose solutions laced with the bitter tastant, quinine, to ensure calorie consumption, whereas mice with impaired metabolic sensing in AgRP neurons maintained a strong aversion to sucrose/quinine solutions despite ongoing hunger. In conclusion, we demonstrate normal metabolic sensing in AgRP neurons drives the preference for calorie consumption, primarily when needed, by engaging dopamine release in the nucleus accumbens.
Collapse
Affiliation(s)
- Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Harry Dempsey
- Florey Institute of Neuroscience & Mental Health, Parkville, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Sclafani A, Ackroff K. Glucose appetition in C57BL/6J mice: Influence of nonnutritive sweetener experience, food deprivation state and sex differences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582331. [PMID: 38464099 PMCID: PMC10925266 DOI: 10.1101/2024.02.27.582331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In addition to its sweet taste, glucose has potent and rapid postoral actions (appetition) that enhance its reward value. This has been demonstrated by the experience-induced preference for glucose over initially preferred nonnutritive sweetener solutions in 24-h choice tests. However, some sweetener solutions (e.g., 0.8% sucralose) have inhibitory postoral actions that may exaggerate glucose appetition whereas others (e.g., 0.1% sucralose + 0.1% saccharin, S+S) do not. Experiment 1 revealed that food-restricted (FR) male C57BL/6J mice displayed similar rapid glucose appetition effects (stimulation of glucose licking within minutes) and conditioned flavor preferences following 1-h experience with flavored 0.8% sucralose or 0.1% S+S and 8% glucose solutions. Thus, the inhibitory effects of 0.8% sucralose observed in 24-h tests were not apparent in 1-h tests. Experiment 2 evaluated the effects of food deprivation state on 1-h glucose appetition. Unlike FR female mice, ad libitum (AL) fed mice displayed no or delayed stimulation of glucose licking depending upon the training solutions used (0.1% S+S vs. 8% glucose, or 0.2% S+S vs. 16% glucose). Both AL groups, like the FR group, developed a preference for the glucose-paired flavor over the S+S paired flavor. Thus, food restriction promotes glucose appetition but is not required for a conditioned preference. Overall, male and female mice showed similar glucose appetition responses although females displayed a more rapid initial glucose response.
Collapse
|
3
|
Yu KB, Son C, Chandra A, Paramo J, Novoselov A, Özcan E, Kazmi SA, Lum GR, Lopez-Romero A, Lynch JB, Hsiao EY. Complex carbohydrate utilization by gut bacteria modulates host food preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580152. [PMID: 38405943 PMCID: PMC10888876 DOI: 10.1101/2024.02.13.580152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The gut microbiota interacts directly with dietary nutrients and has the ability to modify host feeding behavior, but the underlying mechanisms remain poorly understood. Select gut bacteria digest complex carbohydrates that are non-digestible by the host and liberate metabolites that serve as additional energy sources and pleiotropic signaling molecules. Here we use a gnotobiotic mouse model to examine how differential fructose polysaccharide metabolism by commensal gut bacteria influences host preference for diets containing these carbohydrates. Bacteroides thetaiotaomicron and Bacteroides ovatus selectively ferment fructans with different glycosidic linkages: B. thetaiotaomicron ferments levan with β2-6 linkages, whereas B. ovatus ferments inulin with β2-1 linkages. Since inulin and levan are both fructose polymers, inulin and levan diet have similar perceptual salience to mice. We find that mice colonized with B. thetaiotaomicron prefer the non-fermentable inulin diet, while mice colonized with B. ovatus prefer the non-fermentable levan diet. Knockout of bacterial fructan utilization genes abrogates this preference, whereas swapping the fermentation ability of B. thetaiotaomicron to inulin confers host preference for the levan diet. Bacterial fructan fermentation and host behavioral preference for the non-fermentable fructan are associated with increased neuronal activation in the arcuate nucleus of the hypothalamus, a key brain region for appetite regulation. These results reveal that selective nutrient metabolism by gut bacteria contributes to host associative learning of dietary preference, and further informs fundamental understanding of the biological determinants of food choice.
Collapse
Affiliation(s)
- Kristie B Yu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Celine Son
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anisha Chandra
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Anna Novoselov
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ezgi Özcan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeen A Kazmi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gregory R Lum
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jonathan B Lynch
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Current address: Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Goodman-Luskin Microbiome Center, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|