1
|
Al-Saffar NMS, Troy H, Wong Te Fong AC, Paravati R, Jackson LE, Gowan S, Boult JKR, Robinson SP, Eccles SA, Yap TA, Leach MO, Chung YL. Metabolic biomarkers of response to the AKT inhibitor MK-2206 in pre-clinical models of human colorectal and prostate carcinoma. Br J Cancer 2018; 119:1118-1128. [PMID: 30377337 PMCID: PMC6219501 DOI: 10.1038/s41416-018-0242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AKT is commonly overexpressed in tumours and plays an important role in the metabolic reprogramming of cancer. We have used magnetic resonance spectroscopy (MRS) to assess whether inhibition of AKT signalling would result in metabolic changes that could potentially be used as biomarkers to monitor response to AKT inhibition. METHODS Cellular and metabolic effects of the allosteric AKT inhibitor MK-2206 were investigated in HT29 colon and PC3 prostate cancer cells and xenografts using flow cytometry, immunoblotting, immunohistology and MRS. RESULTS In vitro treatment with MK-2206 inhibited AKT signalling and resulted in time-dependent alterations in glucose, glutamine and phospholipid metabolism. In vivo, MK-2206 resulted in inhibition of AKT signalling and tumour growth compared with vehicle-treated controls. In vivo MRS analysis of HT29 subcutaneous xenografts showed similar metabolic changes to those seen in vitro including decreases in the tCho/water ratio, tumour bioenergetic metabolites and changes in glutamine and glutathione metabolism. Similar phosphocholine changes compared to in vitro were confirmed in the clinically relevant orthotopic PC3 model. CONCLUSION This MRS study suggests that choline metabolites detected in response to AKT inhibition are time and microenvironment-dependent, and may have potential as non-invasive biomarkers for monitoring response to AKT inhibitors in selected cancer types.
Collapse
Affiliation(s)
- Nada M S Al-Saffar
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| | - Helen Troy
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
- Abbott Ireland Diagnostics Division, Pregnancy and Fertility Team, Lisnamuck, Longford, Ireland
| | - Anne-Christine Wong Te Fong
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Roberta Paravati
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - L Elizabeth Jackson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Jessica K R Boult
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Simon P Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| |
Collapse
|
2
|
Serkova NJ, Eckhardt SG. Metabolic Imaging to Assess Treatment Response to Cytotoxic and Cytostatic Agents. Front Oncol 2016; 6:152. [PMID: 27471678 PMCID: PMC4946377 DOI: 10.3389/fonc.2016.00152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
For several decades, cytotoxic chemotherapeutic agents were considered the basis of anticancer treatment for patients with metastatic tumors. A decrease in tumor burden, assessed by volumetric computed tomography and magnetic resonance imaging, according to the response evaluation criteria in solid tumors (RECIST), was considered as a radiological response to cytotoxic chemotherapies. In addition to RECIST-based dimensional measurements, a metabolic response to cytotoxic drugs can be assessed by positron emission tomography (PET) using (18)F-fluoro-thymidine (FLT) as a radioactive tracer for drug-disrupted DNA synthesis. The decreased (18)FLT-PET uptake is often seen concurrently with increased apparent diffusion coefficients by diffusion-weighted imaging due to chemotherapy-induced changes in tumor cellularity. Recently, the discovery of molecular origins of tumorogenesis led to the introduction of novel signal transduction inhibitors (STIs). STIs are targeted cytostatic agents; their effect is based on a specific biological inhibition with no immediate cell death. As such, tumor size is not anymore a sensitive end point for a treatment response to STIs; novel physiological imaging end points are desirable. For receptor tyrosine kinase inhibitors as well as modulators of the downstream signaling pathways, an almost immediate inhibition in glycolytic activity (the Warburg effect) and phospholipid turnover (the Kennedy pathway) has been seen by metabolic imaging in the first 24 h of treatment. The quantitative imaging end points by magnetic resonance spectroscopy and metabolic PET (including 18F-fluoro-deoxy-glucose, FDG, and total choline) provide an early treatment response to targeted STIs, before a reduction in tumor burden can be seen.
Collapse
Affiliation(s)
- Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - S. Gail Eckhardt
- Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
3
|
Josephs DH, Sarker D. Pharmacodynamic Biomarker Development for PI3K Pathway Therapeutics. TRANSLATIONAL ONCOGENOMICS 2016; 7:33-49. [PMID: 26917948 PMCID: PMC4762492 DOI: 10.4137/tog.s30529] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is integral to many essential cell processes, including cell growth, differentiation, proliferation, motility, and metabolism. Somatic mutations and genetic amplifications that result in activation of the pathway are frequently detected in cancer. This has led to the development of rationally designed therapeutics targeting key members of the pathway. Critical to the successful development of these drugs are pharmacodynamic biomarkers that aim to define the degree of target and pathway inhibition. In this review, we discuss the pharmacodynamic biomarkers that have been utilized in early-phase clinical trials of PI3K pathway inhibitors. We focus on the challenges related to development and interpretation of these assays, their optimal integration with pharmacokinetic and predictive biomarkers, and future strategies to ensure successful development of PI3K pathway inhibitors within a personalized medicine paradigm for cancer.
Collapse
Affiliation(s)
- Debra H Josephs
- Department of Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London, UK
| | - Debashis Sarker
- Department of Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
4
|
Esmaeili M, Bathen TF, Engebråten O, Mælandsmo GM, Gribbestad IS, Moestue SA. Quantitative (31)P HR-MAS MR spectroscopy for detection of response to PI3K/mTOR inhibition in breast cancer xenografts. Magn Reson Med 2013; 71:1973-81. [PMID: 23878023 DOI: 10.1002/mrm.24869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/11/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Phospholipid metabolites are of importance in cancer studies, and have been suggested as candidate metabolic biomarkers for response to targeted anticancer drugs. The purpose of this study was to develop a phosphorus ((31) P) high resolution magic angle spinning magnetic resonance spectroscopy protocol for quantification of phosphorylated metabolites in intact cancer tissue. METHODS (31) P spectra were acquired on a 14.1 T spectrometer with a triplet (1) H/(13) C/(31) P MAS probe. Quantification of metabolites was performed using the PULCON principle. Basal-like and luminal-like breast cancer xenografts were treated with the dual PI3K/mTOR inhibitor BEZ235, and the impact of treatment on the concentration of phosphocholine, glycerophosphocholine, phosphoethanolamine and glycerophosphoethanolamine was evaluated. RESULTS In basal-like xenografts, BEZ235 treatment induced a significant decrease in phosphoethanolamine (-25.6%, P = 0.01) whilst phosphocholine (16.5%, P = 0.02) and glycerophosphocholine (37.3%, P < 0.001) were significantly increased. The metabolic changes could partially be explained by increased levels of phospholipase A2 group 4A (PLA2G4A). CONCLUSION (31) P high resolution magic angle spinning magnetic resonance spectroscopy is a useful method for quantitative assessment of metabolic responses to PI3K inhibition. Using the PULCON principle for quantification, the levels of phosphocholine, glycerophosphocholine, phosphoethanolamine, and glycerophosphoethanolamine could be evaluated with high precision and accuracy.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
5
|
Metabolic biomarkers for response to PI3K inhibition in basal-like breast cancer. Breast Cancer Res 2013; 15:R16. [PMID: 23448424 PMCID: PMC3672699 DOI: 10.1186/bcr3391] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/28/2013] [Indexed: 12/18/2022] Open
Abstract
Introduction The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in cancer cells through numerous mutations and epigenetic changes. The recent development of inhibitors targeting different components of the PI3K pathway may represent a valuable treatment alternative. However, predicting efficacy of these drugs is challenging, and methods for therapy monitoring are needed. Basal-like breast cancer (BLBC) is an aggressive breast cancer subtype, frequently associated with PI3K pathway activation. The objectives of this study were to quantify the PI3K pathway activity in tissue sections from xenografts representing basal-like and luminal-like breast cancer before and immediately after treatment with PI3K inhibitors, and to identify metabolic biomarkers for treatment response. Methods Tumor-bearing animals (n = 8 per treatment group) received MK-2206 (120 mg/kg/day) or BEZ235 (50 mg/kg/day) for 3 days. Activity in the PI3K/Akt/mammalian target of rapamycin pathway in xenografts and human biopsies was evaluated using a novel method for semiquantitative assessment of Aktser473 phosphorylation. Metabolic changes were assessed by ex vivo high-resolution magic angle spinning magnetic resonance spectroscopy. Results Using a novel dual near-infrared immunofluorescent imaging method, basal-like xenografts had a 4.5-fold higher baseline level of pAktser473 than luminal-like xenografts. Following treatment, basal-like xenografts demonstrated reduced levels of pAktser473 and decreased proliferation. This correlated with metabolic changes, as both MK-2206 and BEZ235 reduced lactate concentration and increased phosphocholine concentration in the basal-like tumors. BEZ235 also caused increased glucose and glycerophosphocholine concentrations. No response to treatment or change in metabolic profile was seen in luminal-like xenografts. Analyzing tumor sections from five patients with BLBC demonstrated that two of these patients had an elevated pAktser473 level. Conclusion The activity of the PI3K pathway can be determined in tissue sections by quantitative imaging using an antibody towards pAktser473. Long-term treatment with MK-2206 or BEZ235 resulted in significant growth inhibition in basal-like, but not luminal-like, xenografts. This indicates that PI3K inhibitors may have selective efficacy in basal-like breast cancer with increased PI3K signaling, and identifies lactate, phosphocholine and glycerophosphocholine as potential metabolic biomarkers for early therapy monitoring. In human biopsies, variable pAktser473 levels were observed, suggesting heterogeneous PI3K signaling activity in BLBC.
Collapse
|
6
|
Moestue SA, Engebraaten O, Gribbestad IS. Metabolic effects of signal transduction inhibition in cancer assessed by magnetic resonance spectroscopy. Mol Oncol 2011; 5:224-41. [PMID: 21536506 DOI: 10.1016/j.molonc.2011.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022] Open
Abstract
Despite huge efforts in development of drugs targeting oncogenic signalling, the number of such drugs entering clinical practice to date remains limited. Rational use of biomarkers for drug candidate selection and early monitoring of response to therapy may accelerate this process. Magnetic resonance spectroscopy (MRS) can be used to assess metabolic effects of drug treatment both in vivo and in vitro, and technological advances are continuously increasing the utility of this non-invasive method. In this review, we summarise the use of MRS for monitoring the effect of targeted anticancer drugs, and discuss the potential role of MRS in the context of personalised cancer treatment.
Collapse
Affiliation(s)
- Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | |
Collapse
|