1
|
Lalitkumar PGL, Lundström E, Byström B, Ujvari D, Murkes D, Tani E, Söderqvist G. Effects of Estradiol/Micronized Progesterone vs. Conjugated Equine Estrogens/Medroxyprogesterone Acetate on Breast Cancer Gene Expression in Healthy Postmenopausal Women. Int J Mol Sci 2023; 24:ijms24044123. [PMID: 36835533 PMCID: PMC9959219 DOI: 10.3390/ijms24044123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Recent studies suggest estradiol (E2)/natural progesterone (P) confers less breast cancer risk compared with conjugated equine estrogens (CEE)/synthetic progestogens. We investigate if differences in the regulation of breast cancer-related gene expression could provide some explanation. This study is a subset of a monocentric, 2-way, open observer-blinded, phase 4 randomized controlled trial on healthy postmenopausal women with climacteric symptoms (ClinicalTrials.gov; EUCTR-2005/001016-51). Study medication was two 28-day cycles of sequential hormone treatment with oral 0.625 mg CEE and 5 mg of oral medroxyprogesterone acetate (MPA) or 1.5 mg E2 as percutaneous gel/day with the addition of 200 mg oral micronized P. MPA and P were added days 15-28/cycle. Material from two core-needle breast biopsies in 15 women in each group was subject to quantitative PCR (Q-PCR). The primary endpoint was a change in breast carcinoma development gene expression. In the first eight consecutive women, RNA was extracted at baseline and after two months of treatment and subjected to microarray for 28856 genes and Ingenuity Pathways Analysis (IPA) to identify risk factor genes. Microarray analysis showed 3272 genes regulated with a fold-change of >±1.4. IPA showed 225 genes belonging to mammary-tumor development function: 198 for CEE/MPA vs. 34 for E2/P. Sixteen genes involved in mammary tumor inclination were subject to Q-PCR, inclining the CEE/MPA group towards an increased risk for breast carcinoma compared to the E2/P group at a very high significance level (p = 3.1 × 10-8, z-score 1.94). The combination of E2/P affected breast cancer-related genes much less than CEE/MPA.
Collapse
Affiliation(s)
| | - Eva Lundström
- Division for Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, SE 17176 Stockholm, Sweden
| | - Birgitta Byström
- Division for Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, SE 17176 Stockholm, Sweden
| | - Dorina Ujvari
- Division for Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, SE 17176 Stockholm, Sweden
| | - Daniel Murkes
- Division for Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, SE 17176 Stockholm, Sweden
| | - Edneia Tani
- Department of Pathology, Cytology Karolinska Institutet, SE 17176 Stockholm, Sweden
| | - Gunnar Söderqvist
- Division for Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, SE 17176 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
2
|
Krum-Hansen S, Standahl Olsen K, Anderssen E, Frantzen JO, Lund E, Paulssen RH. Associations of breast cancer related exposures and gene expression profiles in normal breast tissue-The Norwegian Women and Cancer normal breast tissue study. Cancer Rep (Hoboken) 2023; 6:e1777. [PMID: 36617746 PMCID: PMC10075301 DOI: 10.1002/cnr2.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Normal breast tissue is utilized in tissue-based studies of breast carcinogenesis. While gene expression in breast tumor tissue is well explored, our knowledge of transcriptomic signatures in normal breast tissue is still incomplete. The aim of this study was to investigate variability of gene expression in a large sample of normal breast tissue biopsies, according to breast cancer related exposures (obesity, smoking, alcohol, hormone therapy, and parity). METHODS We analyzed gene expression profiles from 311 normal breast tissue biopsies from cancer-free, post-menopausal women, using Illumina bead chip arrays. Principal component analysis and K-means clustering was used for initial analysis of the dataset. The association of exposures and covariates with gene expression was determined using linear models for microarrays. RESULTS Heterogeneity of the breast tissue and cell composition had the strongest influence on gene expression profiles. After adjusting for cell composition, obesity, smoking, and alcohol showed the highest numbers of associated genes and pathways, whereas hormone therapy and parity were associated with negligible gene expression differences. CONCLUSION Our results provide insight into associations between major exposures and gene expression profiles and provide an informative baseline for improved understanding of exposure-related molecular events in normal breast tissue of cancer-free, post-menopausal women.
Collapse
Affiliation(s)
- Sanda Krum-Hansen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Endre Anderssen
- Genomics Support Center Tromsø (GSCT), UiT The Arctic University of Norway, Tromsø, Norway
| | - Jan Ole Frantzen
- Narvik Hospital, University Hospital of North Norway, Narvik, Norway
| | - Eiliv Lund
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ruth H Paulssen
- Genomics Support Center Tromsø (GSCT), UiT The Arctic University of Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Harlid S, Xu Z, Kirk E, Wilson LE, Troester MA, Taylor JA. Hormone therapy use and breast tissue DNA methylation: analysis of epigenome wide data from the normal breast study. Epigenetics 2019; 14:146-157. [PMID: 30821641 PMCID: PMC6557608 DOI: 10.1080/15592294.2019.1580111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hormone therapy (HT) is associated with increased risk of breast cancer, strongly dependent on type, duration, and recency of use. HT use could affect cancer risk by changing breast tissue transcriptional programs. We hypothesize that these changes are preceded by changes in DNA methylation. To explore this hypothesis we used histologically normal-appearing breast tissue from the Normal Breast Study (NBS). DNA methylation β-values were obtained using the Illumina HumanMethylation 450 BeadChips for 90 samples including all NBS-participants who used HT within 5 y before surgery. Data were analyzed using the reference-free cell mixture method. Cancer Genome Atlas (TCGA) mRNA-Seq data were used to assess correlation between DNA methylation and gene expression. We identified 527 CpG sites in 403 genes that were associated with ever using HT at genome wide significance (FDR q < 0.05), of these, 68 sites were also significantly associated with duration of use or recency of use. Twelve sites reached significance in all analyses one of which was cg01382688 in ARHGEF4 (p < 1.2x10−7). Mutations in ARHGEF4 have been reported in breast tumors, but this is the first report of possible breast cancer-related DNA methylation changes. In addition, 22 genes included more than one significant CpG site and a majority of these sites were significantly correlated with gene expression. Although based on small numbers, these findings support the hypothesis that HT is associated with epigenetic alterations in breast tissue, and identifies genes with altered DNA methylation states which could be linked to breast cancer development.
Collapse
Affiliation(s)
- Sophia Harlid
- a Epigenetics & Stem Cell Biology Laboratory , National Institute of Environmental Health Sciences, NIH , Research Triangle Park , NC , USA.,b Department of Radiation Sciences, Oncology , Umeå University , Umeå , Sweden
| | - Zongli Xu
- c Epidemiology Branch , National Institute of Environmental Health Sciences, NIH , Research Triangle Park , NC , USA
| | - Erin Kirk
- d Department of Epidemiology , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Lauren E Wilson
- c Epidemiology Branch , National Institute of Environmental Health Sciences, NIH , Research Triangle Park , NC , USA.,e Department of Population Health Sciences , Duke University School of Medicine , Durham , NC , USA
| | - Melissa A Troester
- d Department of Epidemiology , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Jack A Taylor
- a Epigenetics & Stem Cell Biology Laboratory , National Institute of Environmental Health Sciences, NIH , Research Triangle Park , NC , USA.,c Epidemiology Branch , National Institute of Environmental Health Sciences, NIH , Research Triangle Park , NC , USA
| |
Collapse
|
4
|
Hilborn E, Stål O, Jansson A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 2018; 8:30552-30562. [PMID: 28430630 PMCID: PMC5444764 DOI: 10.18632/oncotarget.15547] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer.
Collapse
Affiliation(s)
- Erik Hilborn
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Agneta Jansson
- Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Sieuwerts AM, De Napoli G, van Galen A, Kloosterboer HJ, de Weerd V, Zhang H, Martens JWM, Foekens JA, De Geyter C. Hormone replacement therapy dependent changes in breast cancer-related gene expression in breast tissue of healthy postmenopausal women. Mol Oncol 2011; 5:504-16. [PMID: 21956102 DOI: 10.1016/j.molonc.2011.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/10/2011] [Accepted: 09/12/2011] [Indexed: 01/18/2023] Open
Abstract
Risk assessment of future breast cancer risk through exposure to sex steroids currently relies on clinical scorings such as mammographic density. Knowledge about the gene expression patterns in existing breast cancer tumors may be used to identify risk factors in the breast tissue of women still free of cancer. The differential effects of estradiol, estradiol together with gestagens, or tibolone on breast cancer-related gene expression in normal breast tissue samples taken from postmenopausal women may be used to identify gene expression profiles associated with a higher breast cancer risk. Breast tissue samples were taken from 33 healthy postmenopausal women both before and after a six month treatment with either 2mg micronized estradiol [E2], 2mg micronized estradiol and 1mg norethisterone acetate [E2+NETA], 2.5mg tibolone [T] or [no HRT]. Except for [E2], which was only given to women after hysterectomy, the allocation to each of the three groups was randomized. The expression of 102 mRNAs and 46 microRNAs putatively involved in breast cancer was prospectively determined in the biopsies of 6 women receiving [no HRT], 5 women receiving [E2], 5 women receiving [E2+NETA], and 6 receiving [T]. Using epithelial and endothelial markers genes, non-representative biopsies from 11 women were eliminated. Treatment of postmenopausal women with [E2+NETA] resulted in the highest number of differentially (p<0.05) regulated genes (16.2%) compared to baseline, followed by [E2] (10.1%) and [T] (4.7%). Among genes that were significantly down-regulated by [E2+NETA] ranked estrogen-receptor-1 (ESR1, p=0.019) and androgen receptor (AR, p=0.019), whereas CYP1B1, a gene encoding an estrogen-metabolizing enzyme, was significantly up-regulated (p=0.016). Mammary cells triggered by [E2+NETA] and [E2] adjust for steroidogenic up-regulation through down-regulation of the estrogen-receptor pathway. In this prospective study, prolonged administration of [E2+NETA] and to a lesser extent of [E2] but not [T] were associated in otherwise healthy breast tissue with a change in the expression of genes putatively involved in breast cancer. Our data suggest that normal mammary cells triggered by [E2+NETA] adjust for steroidogenic up-regulation through down-regulation of the estrogen-receptor pathway. This feasibility study provides the basis for whole genome analyses to identify novel markers involved in increased breast cancer risk.
Collapse
Affiliation(s)
- Anieta M Sieuwerts
- Department of Medical Oncology, Josephine Nefkens Institute, Cancer Genomics Centre, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|