1
|
Chatterji S, Krzoska E, Thoroughgood CW, Saganty J, Liu P, Elsberger B, Abu-Eid R, Speirs V. Defining genomic, transcriptomic, proteomic, epigenetic, and phenotypic biomarkers with prognostic capability in male breast cancer: a systematic review. Lancet Oncol 2023; 24:e74-e85. [PMID: 36725152 DOI: 10.1016/s1470-2045(22)00633-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
Although similar phenotypically, there is evidence that male and female breast cancer differ in their molecular landscapes. In this systematic review, we consolidated all existing prognostic biomarker data in male breast cancer spanning genetics, transcriptomics, proteomics, and epigenetics, and phenotypic features of prognostic value from articles published over a 29-year period (March 16, 1992, to May 1, 2021). We identified knowledge gaps in the existing literature, discussed limitations of the included studies, and outlined potential approaches for translational biomarker discovery and validation in male breast cancer. We also recognised STC2, DDX3, and DACH1 as underexploited markers of male-specific prognostic value in breast cancer. Finally, beyond describing the cumulative knowledge on the extensively researched markers oestrogen receptor-α, progesterone receptor, HER2, androgen receptor, and BRCA2, we highlighted ATM, CCND1, FGFR2, GATA3, HIF1-α, MDM2, TP53, and c-Myc as well studied predictors of poor survival that also aligned with several hallmarks of cancer.
Collapse
Affiliation(s)
- Subarnarekha Chatterji
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Emma Krzoska
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - John Saganty
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Peng Liu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Rasha Abu-Eid
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Dentistry, University of Aberdeen, Aberdeen, UK
| | - Valerie Speirs
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
2
|
Pensabene M, Von Arx C, De Laurentiis M. Male Breast Cancer: From Molecular Genetics to Clinical Management. Cancers (Basel) 2022; 14:2006. [PMID: 35454911 PMCID: PMC9030724 DOI: 10.3390/cancers14082006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
MBC is a rare disease accounting for almost 1% of all cancers in men and less than 1% of breast cancer. Emerging data on the genetic drivers of predisposition for MBC are available and different risk factors have been associated with its pathogenesis. Genetic alterations, such as pathogenetic variants in BRCA1/2 and other moderate-/low-penetrance genes, along with non-genetic risk factors, have been recognized as pathogenic factors for MBC. Preventive and therapeutic implications could be related to the detection of alterations in predisposing genes, especially BRCA1/2, and to the identification of oncogenic drivers different from FBC. However, approved treatments for MBC remain the same as FBC. Cancer genetic counseling has to be considered in the diagnostic work-up of MBC with or without positive oncological family history. Here, we review the literature, reporting recent data about this malignancy with a specific focus on epidemiology, and genetic and non-genetic risk factors. We introduce the perspective of cancer genetic counseling for MBC patients and their healthy at-risk family members, with a focus on different hereditary cancer syndromes.
Collapse
Affiliation(s)
- Matilde Pensabene
- National Cancer Institute, IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (C.V.A.); (M.D.L.)
| | | | | |
Collapse
|
3
|
Male breast cancer: an update. Virchows Arch 2021; 480:85-93. [PMID: 34458944 DOI: 10.1007/s00428-021-03190-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Male breast cancer (MBC) is rare, accounting for less than 1% of all breast cancer but the incidence has increased worldwide. Risk factors include increased longevity, obesity, testicular diseases and tumours, and germline mutations of BRCA2. BRCA2 carriers have 80 times the risk of the general population. Men generally present with breast cancer at an older age compared with women. Histologically, MBC is often of grade 2, hormone receptor positive, HER2 negative, and no special type carcinoma although in situ and invasive papillary carcinomas are common. Reporting and staging are similar to female breast cancer. Metastatic lesions to the male breast do occur and should be differentiated from primary carcinomas. Until recently, MBC was thought to be similar to the usual ER positive post-menopausal female counterpart. However, advances in MBC research and trials have highlighted significant differences between the two. This review provides an up to date overview of the biology, genetics, and histology of MBC with comparison to female breast cancers and differential diagnosis from histological mimics.
Collapse
|
4
|
Abeni E, Grossi I, Marchina E, Coniglio A, Incardona P, Cavalli P, Zorzi F, Chiodera PL, Paties CT, Crosatti M, De Petro G, Salvi A. DNA methylation variations in familial female and male breast cancer. Oncol Lett 2021; 21:468. [PMID: 33907578 PMCID: PMC8063268 DOI: 10.3892/ol.2021.12729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
In total, ~25% of familial breast cancer (BC) is attributed to germline mutations of the BRCA1 and BRCA2 genes, while the rest of the cases are included in the BRCAX group. BC is also known to affect men, with a worldwide incidence of 1%. Epigenetic alterations, including DNA methylation, have been rarely studied in male breast cancer (MBC) on a genome-wide level. The aim of the present study was to examine the global DNA methylation profiles of patients with BC to identify differences between familial female breast cancer (FBC) and MBC, and according to BRCA1, BRCA2 or BRCAX mutation status. The genomic DNA of formalin-fixed paraffin-embedded tissues from 17 women and 7 men with BC was subjected to methylated DNA immunoprecipitation and hybridized on human promoter microarrays. The comparison between FBC and MBC revealed 2,846 significant differentially methylated regions corresponding to 2,486 annotated genes. Gene Ontology enrichment analysis revealed molecular function terms, such as the GTPase superfamily genes (particularly the GTPase Rho GAP/GEF and GTPase RAB), and cellular component terms associated with cytoskeletal architecture, such as 'cytoskeletal part', 'keratin filament' and 'intermediate filament'. When only FBC was considered, several cancer-associated pathways were among the most enriched KEGG pathways of differentially methylated genes when the BRCA2 group was compared with the BRCAX or BRCA1+BRCAX groups. The comparison between the BRCA1 and BRCA2+BRCAX groups comprised the molecular function term 'cytoskeletal protein binding'. Finally, the functional annotation of differentially methylated genes between the BRCAX and BRCA1+BRCA2 groups indicated that the most enriched molecular function terms were associated with GTPase activity. In conclusion, to the best of our knowledge, the present study was the first to compare the global DNA methylation profile of familial FBC and MBC. The results may provide useful insights into the epigenomic subtyping of BC and shed light on a possible novel molecular mechanism underlying BC carcinogenesis.
Collapse
Affiliation(s)
- Edoardo Abeni
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Ilaria Grossi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Arianna Coniglio
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, I-25123 Brescia, Italy
| | - Paolo Incardona
- Anatomic Pathology, Spedali Civili Brescia, I-25123 Brescia, Italy
| | - Pietro Cavalli
- Breast Unit, ASST-Bergamo Est, I-24068 Bergamo, Italy.,ASST of Cremona, Hospital of Cremona, I-26100 Cremona, Italy
| | - Fausto Zorzi
- Department of Pathology, Fondazione Poliambulanza, I-25124 Brescia, Italy
| | | | - Carlo Terenzio Paties
- Department of Oncology and Hematology, Pathology Unit, 'Guglielmo da Saliceto' Hospital, I-29121 Piacenza, Italy
| | - Marialuisa Crosatti
- Department of Respiratory Sciences, University of Leicester, LE1 7RH Leicester, UK
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| |
Collapse
|
5
|
André S, P. Nunes S, Silva F, Henrique R, Félix A, Jerónimo C. Analysis of Epigenetic Alterations in Homologous Recombination DNA Repair Genes in Male Breast Cancer. Int J Mol Sci 2020; 21:ijms21082715. [PMID: 32295201 PMCID: PMC7215617 DOI: 10.3390/ijms21082715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/29/2020] [Accepted: 04/11/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Male breast cancer (BC) is a distinct neoplasm with low but rising incidence, frequently diagnosed as advanced stage disease. Considering the relevance of altered homologous recombination repair (HRR) in male BC, we aimed to explore the biomarker potential of aberrant promoter methylation of ATM, BRCA1, PALB2, RAD51B, and XRCC3. Methods: Formalin-fixed paraffin-embedded (FFPE) tissue samples from 128 male BC patients, paired adjacent normal tissue and 19 gynecomastia cases were collected and assessed by quantitative methylation-specific PCR (qMSP). Non-parametric tests were used to compare methylation levels between tumor and non-tumor samples and to seek for associations with clinicopathological variables. Results: Only RAD51B and XRCC3 disclosed significant differences between tumor and gynecomastia (p < 0.0001 and p = 0.020, respectively). Assembled in a panel, RAD51B and XRCC3 promoter methylation discriminated male BC from gynecomastia with 91.5% sensitivity, 89.5% specificity, and 91.2% accuracy. Moreover, promoter methylation levels were lower in paired non-tumor tissues, comparing to tumor samples. No associations were found between epigenetic alterations and clinicopathological features, as well as with RAD51 and XRCC3 immunoexpression and methylation levels. Conclusion: Quantitative promoter methylation of RAD51B and XRCC3 constitutes a promising and accurate biomarker for male BC. Validation in larger series and in liquid biopsies is warranted to confirm its usefulness in detection and monitoring settings.
Collapse
Affiliation(s)
- Saudade André
- Department of Pathology, Portuguese Oncology Institute of Lisboa, 1099-023 Lisboa, Portugal;
- Correspondence: (S.A.); (C.J.); Tel.: +351-932-878-710 (S.A.); +351-225084000 (C.J.); Fax: +351-225-084-047 (C.J.)
| | - Sandra P. Nunes
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (S.P.N.); (R.H.)
| | - Fernanda Silva
- Medical School, NOVA University, 1169-056 Lisbon, Portugal;
| | - Rui Henrique
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (S.P.N.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar– University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Ana Félix
- Department of Pathology, Portuguese Oncology Institute of Lisboa, 1099-023 Lisboa, Portugal;
- Medical School, NOVA University, 1169-056 Lisbon, Portugal;
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (S.P.N.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar– University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
- Correspondence: (S.A.); (C.J.); Tel.: +351-932-878-710 (S.A.); +351-225084000 (C.J.); Fax: +351-225-084-047 (C.J.)
| |
Collapse
|
6
|
Moelans CB, de Ligt J, van der Groep P, Prins P, Besselink NJM, Hoogstraat M, Ter Hoeve ND, Lacle MM, Kornegoor R, van der Pol CC, de Leng WWJ, Barbé E, van der Vegt B, Martens J, Bult P, Smit VTHBM, Koudijs MJ, Nijman IJ, Voest EE, Selenica P, Weigelt B, Reis-Filho JS, van der Wall E, Cuppen E, van Diest PJ. The molecular genetic make-up of male breast cancer. Endocr Relat Cancer 2019; 26:779-794. [PMID: 31340200 PMCID: PMC6938562 DOI: 10.1530/erc-19-0278] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Abstract
Male breast cancer (MBC) is extremely rare and accounts for less than 1% of all breast malignancies. Therefore, clinical management of MBC is currently guided by research on the disease in females. In this study, DNA obtained from 45 formalin-fixed paraffin-embedded (FFPE) MBCs with and 90 MBCs (52 FFPE and 38 fresh-frozen) without matched normal tissues was subjected to massively parallel sequencing targeting all exons of 1943 cancer-related genes. The landscape of mutations and copy number alterations was compared to that of publicly available estrogen receptor (ER)-positive female breast cancers (smFBCs) and correlated to prognosis. From the 135 MBCs, 90% showed ductal histology, 96% were ER-positive, 66% were progesterone receptor (PR)-positive, and 2% HER2-positive, resulting in 50, 46 and 4% luminal A-like, luminal B-like and basal-like cases, respectively. Five patients had Klinefelter syndrome (4%) and 11% of patients harbored pathogenic BRCA2 germline mutations. The genomic landscape of MBC to some extent recapitulated that of smFBC, with recurrent PIK3CA (36%) and GATA3 (15%) somatic mutations, and with 40% of the most frequently amplified genes overlapping between both sexes. TP53 (3%) somatic mutations were significantly less frequent in MBC compared to smFBC, whereas somatic mutations in genes regulating chromatin function and homologous recombination deficiency-related signatures were more prevalent. MDM2 amplifications were frequent (13%), correlated with protein overexpression (P = 0.001) and predicted poor outcome (P = 0.007). In conclusion, despite similarities in the genomic landscape between MBC and smFBC, MBC is a molecularly unique and heterogeneous disease requiring its own clinical trials and treatment guidelines.
Collapse
Affiliation(s)
- Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joep de Ligt
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Petra van der Groep
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pjotr Prins
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicolle J M Besselink
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Marlous Hoogstraat
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Natalie D Ter Hoeve
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miangela M Lacle
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robert Kornegoor
- Department of Pathology, Gelre Ziekenhuizen, Appeldoorn, The Netherlands
| | - Carmen C van der Pol
- Cancer Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellis Barbé
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bert van der Vegt
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John Martens
- Department of Medical Oncology, Daniel den Hoed Cancer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter Bult
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Marco J Koudijs
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Isaac J Nijman
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Emile E Voest
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elsken van der Wall
- Cancer Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Edwin Cuppen
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Cancer Genomics.nl, Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Rizzolo P, Silvestri V, Valentini V, Zelli V, Zanna I, Masala G, Bianchi S, Palli D, Ottini L. Gene-specific methylation profiles in BRCA-mutation positive and BRCA-mutation negative male breast cancers. Oncotarget 2018; 9:19783-19792. [PMID: 29731982 PMCID: PMC5929425 DOI: 10.18632/oncotarget.24856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
Male breast cancer (MBC) is a rare disease. Due to its rarity, MBC research and clinical approach are mostly based upon data derived from female breast cancer (FBC). Increasing evidence indicate that on molecular level MBC may be an heterogeneous disease different from FBC. In order to investigate whether epigenetic signatures could define molecular subgroups of MBCs, we performed promoter methylation analysis of genes involved in signal transduction and hormone signalling in BRCA1/2 mutation-positive and -negative MBCs. We examined 69 MBCs, paired blood samples, and 15 normal tissues for promoter methylation of hTERT, ESR1, RASSF1, AR, MYC and WNT1 genes. MBCs showed higher gene promoter methylation levels compared to paired blood and normal breast samples. Significantly higher RASSF1 methylation levels were observed in association with BRCA1/2 mutations, HER2 expression and high tumor grade. Significantly higher AR methylation levels were observed in BRCA1/2 wild-type cases and higher WNT1 methylation levels in PR negative cases. Overall, our results indicate that alterations in gene methylation profiles are common in MBC and that methylation pattern of tumor-associated genes may allow for the identification of MBC molecular subgroups, that could have implications in clinical management of MBC patients.
Collapse
Affiliation(s)
- Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPRO), Florence, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPRO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPRO), Florence, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Deb S, Gorringe KL, Pang JMB, Byrne DJ, Takano EA, Dobrovic A, Fox SB. BRCA2 carriers with male breast cancer show elevated tumour methylation. BMC Cancer 2017; 17:641. [PMID: 28893223 PMCID: PMC5594583 DOI: 10.1186/s12885-017-3632-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
Background Male breast cancer (MBC) represents a poorly characterised group of tumours, the management of which is largely based on practices established for female breast cancer. However, recent studies demonstrate biological and molecular differences likely to impact on tumour behaviour and therefore patient outcome. The aim of this study was to investigate methylation of a panel of commonly methylated breast cancer genes in familial MBCs. Methods 60 tumours from 3 BRCA1 and 25 BRCA2 male mutation carriers and 32 males from BRCAX families were assessed for promoter methylation by methylation-sensitive high resolution melting in a panel of 10 genes (RASSF1A, TWIST1, APC, WIF1, MAL, RARβ, CDH1, RUNX3, FOXC1 and GSTP1). An average methylation index (AMI) was calculated for each case comprising the average of the methylation of the 10 genes tested as an indicator of overall tumour promoter region methylation. Promoter hypermethylation and AMI were correlated with BRCA carrier mutation status and clinicopathological parameters including tumour stage, grade, histological subtype and disease specific survival. Results Tumours arising in BRCA2 mutation carriers showed significantly higher methylation of candidate genes, than those arising in non-BRCA2 familial MBCs (average AMI 23.6 vs 16.6, p = 0.01, 45% of genes hypermethylated vs 34%, p < 0.01). RARβ methylation and AMI-high status were significantly associated with tumour size (p = 0.01 and p = 0.02 respectively), RUNX3 methylation with invasive carcinoma of no special type (94% vs 69%, p = 0.046) and RASSF1A methylation with coexistence of high grade ductal carcinoma in situ (33% vs 6%, p = 0.02). Cluster analysis showed MBCs arising in BRCA2 mutation carriers were characterised by RASSF1A, WIF1, RARβ and GTSP1 methylation (p = 0.02) whereas methylation in BRCAX tumours showed no clear clustering to particular genes. TWIST1 methylation (p = 0.001) and AMI (p = 0.01) were prognostic for disease specific survival. Conclusions Increased methylation defines a subset of familial MBC and with AMI may be a useful prognostic marker. Methylation might be predictive of response to novel therapeutics that are currently under investigation in other cancer types. Electronic supplementary material The online version of this article (10.1186/s12885-017-3632-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siddhartha Deb
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Vic, Parkville, 3010, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Vic, Parkville, 3010, Australia.,Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Department of Pathology, University of Melbourne, Parkville, VIC, 3012, Australia
| | - Jia-Min B Pang
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - David J Byrne
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Elena A Takano
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | -
- Kathleen Cuningham Foundation Consortium for research into Familial Breast Cancer, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Alexander Dobrovic
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Department of Pathology, University of Melbourne, Parkville, VIC, 3012, Australia.,Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3084, Australia
| | - Stephen B Fox
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Vic, Parkville, 3010, Australia. .,Department of Pathology, University of Melbourne, Parkville, VIC, 3012, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3084, Australia.
| |
Collapse
|
9
|
Li X, Yang J, Krishnamurti U, Huo L, Ward KC, O'Regan R, Peng L. Hormone Receptor-Positive Breast Cancer Has a Worse Prognosis in Male Than in Female Patients. Clin Breast Cancer 2017; 17:356-366. [DOI: 10.1016/j.clbc.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
|
10
|
Severson TM, Zwart W. A review of estrogen receptor/androgen receptor genomics in male breast cancer. Endocr Relat Cancer 2017; 24:R27-R34. [PMID: 28062545 DOI: 10.1530/erc-16-0225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
Male breast cancer is a rare disease, of which little is known. In contrast to female breast cancer, the very vast majority of all cases are positive for estrogen receptor alpha (ERα), implicating the function of this steroid hormone receptor in tumor development and progression. Consequently, adjuvant treatment of male breast cancer revolves around inhibition of ERα. In addition, the androgen receptor (AR) gradually receives more attention as a relevant novel target in breast cancer treatment. Importantly, the rationale of treatment decision making is strongly based on parallels with female breast cancer. Yet, prognostic indicators are not necessarily the same in breast cancer between both genders, complicating translatability of knowledge developed in female breast cancer toward male patients. Even though ERα and AR are expressed both in female and male disease, are the genomic functions of both steroid hormone receptors conserved between genders? Recent studies have reported on mutational and epigenetic similarities and differences between male and female breast cancer, further suggesting that some features are strongly conserved between the two diseases, whereas others are not. This review critically discusses the recent developments in the study of male breast cancer in relation to ERα and AR action and highlights the potential future studies to further elucidate the genomic regulation of this rare disease.
Collapse
Affiliation(s)
- Tesa M Severson
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesisthe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Javidiparsijani S, Rosen LE, Gattuso P. Male Breast Carcinoma: A Clinical and Pathological Review. Int J Surg Pathol 2016; 25:200-205. [PMID: 27831530 DOI: 10.1177/1066896916675953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Male breast carcinomas (MBCs) are rare neoplasms that account for 0.1% of all male cancers. Still, there are 2000 new cases of MCB diagnosed annually in the United States. Because of its rarity, data regarding the etiology, risk factors, diagnosis, management, and prognosis of MBC are limited. MBC shares some similarities with female breast carcinoma (FBC). This review will address the important clinical, histopathological, immunohistochemical and molecular features, genetics, management, and prognosis of MBC.
Collapse
|
12
|
Johansson I, Lauss M, Holm K, Staaf J, Nilsson C, Fjällskog ML, Ringnér M, Hedenfalk I. Genome methylation patterns in male breast cancer - Identification of an epitype with hypermethylation of polycomb target genes. Mol Oncol 2015; 9:1565-79. [PMID: 25990542 PMCID: PMC5528783 DOI: 10.1016/j.molonc.2015.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/13/2015] [Accepted: 04/28/2015] [Indexed: 11/03/2022] Open
Abstract
Male breast cancer (MBC) is a rare disease that shares both similarities and differences with female breast cancer (FBC). The aim of this study was to assess genome-wide DNA methylation profiles in MBC and compare them with the previously identified transcriptional subgroups of MBC, luminal M1 and M2, as well as the intrinsic subtypes of FBC. Illumina's 450K Infinium arrays were applied to 47 MBC and 188 FBC tumors. Unsupervised clustering of the most variable CpGs among MBC tumors revealed two stable epitypes, designated ME1 and ME2. The methylation patterns differed significantly between the groups and were closely associated with the transcriptional subgroups luminal M1 and M2. Tumors in the ME1 group were more proliferative and aggressive than ME2 tumors, and showed a tendency toward inferior survival. ME1 tumors also displayed hypermethylation of PRC2 target genes and high expression of EZH2, one of the core components of PRC2. Upon combined analysis of MBC and FBC tumors, ME1 MBCs clustered among luminal B FBC tumors and ME2 MBCs clustered within the predominantly luminal A FBC cluster. The majority of the MBC tumors remained grouped together within the clusters rather than being interspersed among the FBC tumors. Differences in the genomic location of methylated CpGs, as well as in the regulation of central canonical pathways may explain the separation between MBC and FBC tumors in the respective clusters. These findings further suggest that MBC is not readily defined using conventional criteria applied to FBC.
Collapse
Affiliation(s)
- Ida Johansson
- Department of Oncology and Pathology, Clinical Sciences, and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Martin Lauss
- Department of Oncology and Pathology, Clinical Sciences, and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Karolina Holm
- Department of Oncology and Pathology, Clinical Sciences, and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Johan Staaf
- Department of Oncology and Pathology, Clinical Sciences, and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | | | | | - Markus Ringnér
- Department of Oncology and Pathology, Clinical Sciences, and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Department of Oncology and Pathology, Clinical Sciences, and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden.
| |
Collapse
|