1
|
Zhao Z, Shen R, Liu YG. Hybrid sterility genes with driving force for speciation in rice. Sci Bull (Beijing) 2023; 68:1845-1848. [PMID: 37563029 DOI: 10.1016/j.scib.2023.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Affiliation(s)
- Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Sun L, Song R, Wang Y, Wang X, Peng J, Nevo E, Ren X, Sun D. New insights into the evolution of CAF1 family and utilization of TaCAF1Ia1 specificity to reveal the origin of the maternal progenitor for common wheat. J Adv Res 2022; 42:135-148. [PMID: 36513409 PMCID: PMC9788937 DOI: 10.1016/j.jare.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Until now, the most likely direct maternal progenitor (AABB) for common wheat (AABBDD) has yet to be identified. Here, we try to solve this particular problem with the specificity of a novel gene family in wheat and by using large population of rare germplasm resources. OBJECTIVES Dissect the novelty of TaCAF1Ia subfamily in wheat. Exploit the conservative and specific characteristics of TaCAF1Ia1 to reveal the origin of the maternal progenitor for common wheat. METHODS Phylogenetic and collinear analysis of TaCAF1 genes were performed to identify the evolutionary specificity of TaCAF1Ia subfamily. The large-scale expression patterns and interaction patterns analysis of CCR4-NOT complex were used to clarify the expressed and structural specificity of TaCAF1Ia subfamily in wheat. The population resequencing and phylogeny analysis of the TaCAF1Ia1 were utilized for the traceability analysis to understand gene-pool exchanges during the transferring and subsequent development from tetraploid to hexaploidy wheat. RESULTS TaCAF1Ia is a novel non-typical CAF1 subfamily without DEDD (Asp-Glu-Asp-Asp) domain, whose members were extensively duplicated in wheat genome. The replication events had started and constantly evolved from ancestor species. Specifically, it was found that a key member CAF1Ia1 was highly specialized and only existed in the subB genome and S genome. Unlike CAF1s reported in other plants, TaCAF1Ia genes may be new factors for anther development. These atypical TaCAF1s could also form CCR4-NOT complex in wheat but with new interaction sites. Utilizing the particular but conserved characteristics of the TaCAF1Ia1 gene, the comparative analysis of haplotypes composition for TaCAF1Ia1 were identified among wheat populations with different ploidy levels. Based on this, the dual-lineages origin model of maternal progenitor for common wheat and potential three-lineages domestication model for cultivated tetraploid wheat were proposed. CONCLUSION This study brings fresh insights for revealing the origin of wheat and the function of CAF1 in plants.
Collapse
Affiliation(s)
- Longqing Sun
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Ruilian Song
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yixiang Wang
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaofang Wang
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junhua Peng
- Germplasm Enhancement Department, Huazhi Biotech Institute, Changsa, Hunan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Corresponding authors.
| | - Dongfa Sun
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Corresponding authors.
| |
Collapse
|
3
|
Wang P, Qi F, Yao H, Xu X, Li W, Meng J, Zhang Q, Xie W, Xing Y. Fixation of hybrid sterility genes and favorable alleles of key yield-related genes with dominance contribute to the high yield of the Yongyou series of intersubspecific hybrid rice. J Genet Genomics 2022; 49:448-457. [PMID: 35304326 DOI: 10.1016/j.jgg.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/16/2022]
Abstract
In rice, the Yongyou series of Xian-Geng intersubspecific hybrids have excellent production performance, as shown by their extremely high yield. However, the mechanisms underlying the success of these rice hybrids are unclear. In this study, three F2 populations are generated from three Yongyou hybrids to determine the genetic basis of the extremely high yield of intersubspecific hybrids. Genome constitution analysis reveals that the female and male parental lines belong to the Geng and Xian subspecies, respectively, although introgression of 20% of the Xian ancestry and 14% of the Geng ancestry are observed. Twenty-five percent of the hybrid genomes carries homozygous Xian or Geng fragments, which harbors hybrid sterility genes such as Sd, Sc, f5 and qS12 and favorable alleles of key yield-related genes, including NAL1, Ghd7 and Ghd8. None of the parents carries the S5+ killer of the S5 killer-protector system. Compatible allele combinations of hybrid sterility genes ensure the fertility of these intersubspecific hybrids and overcome the bottleneck in applying intersubspecific hybrids. Additive effects of favorable alleles of yield-related genes fixed in both parents enhances midparent values. Many QTLs for yield and its key component spikelets per panicle shows dominance and the net positive dominant effects lead to heterosis. These factors result in an extremely high yield of the hybrids. These findings will aid in the development of new intersubspecific rice hybrids with diverse genetic backgrounds.
Collapse
Affiliation(s)
- Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Feixiang Qi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Honglin Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingbing Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghu Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
4
|
Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics 2022; 49:385-393. [PMID: 35276387 DOI: 10.1016/j.jgg.2022.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
The wide adoption of hybrid rice has greatly increased rice yield in the last several decades. The utilization of heterosis facilitated by male sterility has been a common strategy for hybrid rice development. Here, we summarize our efforts in the genetic and molecular understanding of heterosis and male sterility together with the related progress from other research groups. Analyses of F1 diallel crosses show that strong heterosis widely exists in hybrids of diverse germplasms, and inter-subspecific hybrids often display higher heterosis. Using the elite hybrid Shanyou 63 as a model, an immortalized F2 population design is conducted for systematic characterization of the biological mechanism of heterosis, with identification of loci controlling heterosis of yield and yield component traits. Dominance, overdominance, and epistasis all play important roles in the genetic basis of heterosis; quantitative assessment of these components well addressed the three classical genetic hypotheses for heterosis. Environment-sensitive genic male sterility (EGMS) enables the development of two-line hybrids, and long noncoding RNAs often function as regulators of EGMS. Inter-subspecific hybrids show greatly reduced fertility; the identification and molecular characterization of hybrid sterility genes offer strategies for overcoming inter-subspecific hybrid sterility. These developments have significant implications for future hybrid rice improvement using genomic breeding.
Collapse
|
5
|
Rao J, Wang X, Cai Z, Fan Y, Yang J. Genetic Analysis of S5-Interacting Genes Regulating Hybrid Sterility in Rice. RICE (NEW YORK, N.Y.) 2021; 14:11. [PMID: 33423160 PMCID: PMC7797014 DOI: 10.1186/s12284-020-00452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Asian cultivated rice (Oryza sativa L.) comprises two subspecies, O. sativa subsp. indica and subsp. japonica, and the hybrids between them display strong heterosis. However, hybrid sterility (HS) limits practical use of the heterosis between these two subspecies. S5 is a major-effect locus controlling the HS of female gametes in rice, consisting of three closely-linked genes ORF3, ORF4 and ORF5 that act as a killer-protector system. The HS effects of S5 are inconsistent for different genetic backgrounds, indicating the existence of interacting genes within the genome. RESULTS In the present study, the S5-interacting genes (SIG) and their effects on HS were analyzed by studying the hybrid progeny between an indica rice, Dular (DL) and a japonica rice, BalillaORF5+ (BLORF5+), with a transgenic ORF5+ allele. Four interacting quantitative trait loci (QTL): qSIG3.1, qSIG3.2, qSIG6.1, and qSIG12.1, were genetically mapped. To analyze the effect of each interacting locus, four near-isogenic lines (NILs) were developed. The effect of each specific locus was investigated while the other three loci were kept DL homozygous (DL/DL). Of the four loci, qSIG3.1 was the SIG with the greatest effects in which the DL allele was completely dominant. Furthermore, the DL allele displayed incomplete dominance at qSIG3.2, qSIG6.1, and qSIG12.1. qSIG3.1 will be the first choice for further fine-mapping. CONCLUSIONS Four S5-interacting QTL were identified by genetic mapping and the effect of each locus was analyzed using advanced backcrossed NILs. The present study will facilitate elucidation of the molecular mechanism of rice HS caused by S5. Additionally, it would provide the basis to explore the origin and differentiation of cultivated rice, having practical significance for inter-subspecific hybrid rice breeding programs.
Collapse
Affiliation(s)
- Jianglei Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xing Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhongquan Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
Yang L, Xing F, He Q, Tahir ul Qamar M, Chen LL, Xing Y. Conserved Imprinted Genes between Intra-Subspecies and Inter-Subspecies Are Involved in Energy Metabolism and Seed Development in Rice. Int J Mol Sci 2020; 21:ijms21249618. [PMID: 33348666 PMCID: PMC7765902 DOI: 10.3390/ijms21249618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023] Open
Abstract
Genomic imprinting is an epigenetic phenomenon in which a subset of genes express dependent on the origin of their parents. In plants, it is unclear whether imprinted genes are conserved between subspecies in rice. Here we identified imprinted genes from embryo and endosperm 5-7 days after pollination from three pairs of reciprocal hybrids, including inter-subspecies, japonica intra-subspecies, and indica intra-subspecies reciprocal hybrids. A total of 914 imprinted genes, including 546 in inter-subspecies hybrids, 211 in japonica intra-subspecies hybrids, and 286 in indica intra-subspecies hybrids. In general, the number of maternally expressed genes (MEGs) is more than paternally expressed genes (PEGs). Moreover, imprinted genes tend to be in mini clusters. The number of shared genes by R9N (reciprocal crosses between 9311 and Nipponbare) and R9Z (reciprocal crosses between 9311 and Zhenshan 97), R9N and RZN (reciprocal crosses between Zhonghua11 and Nipponbare), R9Z and RZN was 72, 46, and 16. These genes frequently involved in energy metabolism and seed development. Five imprinted genes (Os01g0151700, Os07g0103100, Os10g0340600, Os11g0679700, and Os12g0632800) are commonly detected in all three pairs of reciprocal hybrids and were validated by RT-PCR sequencing. Gene editing of two imprinted genes revealed that both genes conferred grain filling. Moreover, 15 and 27 imprinted genes with diverse functions in rice were shared with Arabidopsis and maize, respectively. This study provided valuable resources for identification of imprinting genes in rice or even in cereals.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China;
| | - Qin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
| | - Muhammad Tahir ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
- Correspondence: (L.-L.C.); (Y.X.)
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
- Correspondence: (L.-L.C.); (Y.X.)
| |
Collapse
|
7
|
Xia F, Ouyang Y. Recurrent breakdown and rebalance of segregation distortion in the genomes: battle for the transmission advantage. ABIOTECH 2020; 1:246-254. [PMID: 36304131 PMCID: PMC9590546 DOI: 10.1007/s42994-020-00023-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/28/2020] [Indexed: 01/25/2023]
Abstract
Mendel's laws state that each of the two alleles would segregate during gamete formation and show the same transmission ratio in the next generation. However, an unexpected biased allele transmission was first detected in Drosophila a century ago, and was subsequently observed in other animals, plants, and microorganisms. Such segregation distortion (SD) shows substantial effects in population structure and fitness of the progenies, which would ultimately lead to reproductive isolation and speciation. Here, we trace the early investigations on the violation of Mendelian genetic principle, which appears as a wide-existence phenomenon rather than a case of exception. The occurence of SD in the whole genome was observed in a number of plant species at the single- and multi-locus level. Biased transmission ratio might occur at meiosis stage due to asymmetric movement of the chromosome; transmission ratio advantage is also caused by interaction and battle between the alleles from respective genomes at the genetic and molecular level. The origin of a SD system is likely to be determined by coevolution of the killer and protector via recurrent breakdown or rebalance loop. These updated understandings also promote genetic improvement of hybrid crops.
Collapse
Affiliation(s)
- Fan Xia
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
8
|
Koide Y. Evolution of the "Neutral": Diverse Forms of Wide-Compatibility Haplotypes at the Locus for Reproductive Isolation. MOLECULAR PLANT 2020; 13:539-540. [PMID: 32105819 DOI: 10.1016/j.molp.2020.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
9
|
Mi J, Li G, Xu C, Yang J, Yu H, Wang G, Li X, Xiao J, Song H, Zhang Q, Ouyang Y. Artificial Selection in Domestication and Breeding Prevents Speciation in Rice. MOLECULAR PLANT 2020; 13:650-657. [PMID: 31962168 DOI: 10.1016/j.molp.2020.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Speciation has long been regarded as an irreversible process once the reproductive barriers had been established. However, unlike in natural populations, artificial selection might either accelerate or prevent speciation processes in domesticated species. Asian cultivated rice is a target crop for both domestication and artificial breeding; it contains two subspecies of indica and japonica, which usually produce sterile inter-subspecific hybrids due to reproductive barriers. In this study, we constructed the evolutionary trajectory of a reproductive isolation system S5, which regulates fertility in indica-japonica hybrids via three adjacent genes, based on the data of 606 accessions including two cultivated and 11 wild rice species. Although hybrid sterility haplotypes at S5 lead to establishment of a killer-protector reproductive barrier, origin of wide-compatibility haplotypes by complex hybridization and recombination provides an opposing force to reproductive isolation and thus prevents speciation during domestication. Analysis in a diallel set of 209 crosses involving 21 parents showed that the wide-compatibility genotypes largely rescued fertility of indica-japonica hybrids, indicating that the wide-compatibility gene would enable gene flow to maintain species coherence. This counteracting system indicates that combined effects of natural evolution and artificial selection may result in reversible processes of speciation in rice, which may also have implications for genetic improvement of rice.
Collapse
Affiliation(s)
- Jiaming Mi
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Guangwei Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Conghao Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jiangyi Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Yu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Huazhi Song
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Ouyang Y. Understanding and breaking down the reproductive barrier between Asian and African cultivated rice: a new start for hybrid rice breeding. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1114-1116. [PMID: 31297692 DOI: 10.1007/s11427-019-9592-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Xie Y, Shen R, Chen L, Liu YG. Molecular mechanisms of hybrid sterility in rice. SCIENCE CHINA-LIFE SCIENCES 2019; 62:737-743. [PMID: 31119561 DOI: 10.1007/s11427-019-9531-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 01/09/2023]
Abstract
Hybrid sterility presents a major bottleneck in hybrid crop breeding and causes postzygotic reproductive isolation in speciation. Here, we summarize the current understanding of the genetics of rice hybrid sterility and highlight new advances in deciphering the molecular basis of the major genetic loci for hybrid sterility in rice. We also discuss practical strategies for overcoming reproductive barriers to utilize hybrid vigor in inter-specific and inter-subspecific hybrid rice breeding.
Collapse
Affiliation(s)
- Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China. .,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China. .,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Genome-wide dissection of segregation distortion using multiple inter-subspecific crosses in rice. SCIENCE CHINA-LIFE SCIENCES 2019; 62:507-516. [DOI: 10.1007/s11427-018-9452-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/28/2018] [Indexed: 11/27/2022]
|
13
|
Ouyang Y, Zhang Q. The molecular and evolutionary basis of reproductive isolation in plants. J Genet Genomics 2018; 45:613-620. [PMID: 30459118 DOI: 10.1016/j.jgg.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/19/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
Reproductive isolation is defined as processes that prevent individuals of different populations from mating, survival or producing fertile offspring. Reproductive isolation is critical for driving speciation and maintaining species identity, which has been a fundamental concern in evolutionary biology. In plants, reproductive isolation can be divided into prezygotic and postzygotic reproductive barriers, according to its occurrence at different developmental stages. Postzygotic reproductive isolation caused by reduced fitness in hybrids is frequently observed in plants, which hinders gene flow between divergent populations and has substantial effects on genetic differentiation and speciation, and thus is a major obstacle for utilization of heterosis in hybrid crops. During the past decade, China has made tremendous progress in molecular and evolutionary basis of prezygotic and postzygotic reproductive barriers in plants. Present understandings in reproductive isolation especially with new data in the last several years well support three evolutionary genetic models, which represent a general mechanism underlying genomic differentiation and speciation. The updated understanding will offer new approaches for the development of wide-compatibility or neutral varieties, which facilitate breeding of hybrid rice as well as other hybrid crops.
Collapse
Affiliation(s)
- Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Fishman L, Sweigart AL. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:707-731. [PMID: 29505737 DOI: 10.1146/annurev-arplant-042817-040113] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hybrids between flowering plant species often exhibit reduced fitness, including sterility and inviability. Such hybrid incompatibilities create barriers to genetic exchange that can promote reproductive isolation between diverging populations and, ultimately, speciation. Additionally, hybrid breakdown opens a window into hidden molecular and evolutionary processes occurring within species. Here, we review recent work on the mechanisms and origins of hybrid incompatibility in flowering plants, including both diverse genic interactions and chromosomal incompatibilities. Conflict and coevolution among and within plant genomes contributes to the evolution of some well-characterized genic incompatibilities, but duplication and drift also play important roles. Inversions, while contributing to speciation by suppressing recombination, rarely cause underdominant sterility. Translocations cause severe F1 sterility by disrupting meiosis in heterozygotes, making their fixation in outcrossing sister species a paradox. Evolutionary genomic analyses of both genic and chromosomal incompatibilities, in the context of population genetic theory, can explicitly test alternative scenarios for their origins.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA;
| |
Collapse
|
15
|
Bravo Núñez MA, Nuckolls NL, Zanders SE. Genetic Villains: Killer Meiotic Drivers. Trends Genet 2018; 34:424-433. [PMID: 29499907 DOI: 10.1016/j.tig.2018.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/22/2023]
Abstract
Unbiased allele transmission into progeny is a fundamental genetic concept canonized as Mendel's Law of Segregation. Not all alleles, however, abide by the law. Killer meiotic drivers are ultra-selfish DNA sequences that are transmitted into more than half (sometimes all) of the meiotic products generated by a heterozygote. As their name implies, these loci gain a transmission advantage in heterozygotes by destroying otherwise viable meiotic products that do not inherit the driver. We review and classify killer meiotic drive genes across a wide spectrum of eukaryotes. We discuss how analyses of these ultra-selfish genes can lead to greater insight into the mechanisms of gametogenesis and the causes of infertility.
Collapse
Affiliation(s)
- María Angélica Bravo Núñez
- Stowers Institute for Medical Research, Kansas City, MO, USA; These authors contributed equally to this work
| | - Nicole L Nuckolls
- Stowers Institute for Medical Research, Kansas City, MO, USA; These authors contributed equally to this work
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
16
|
Li G, Li X, Wang Y, Mi J, Xing F, Zhang D, Dong Q, Li X, Xiao J, Zhang Q, Ouyang Y. Three representative inter and intra-subspecific crosses reveal the genetic architecture of reproductive isolation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:349-362. [PMID: 28805257 DOI: 10.1111/tpj.13661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 05/28/2023]
Abstract
Systematic characterization of genetic and molecular mechanisms in the formation of hybrid sterility is of fundamental importance in understanding reproductive isolation and speciation. Using ultra-high-density genetic maps, 43 single-locus quantitative trait loci (QTLs) and 223 digenic interactions for embryo-sac, pollen, and spikelet fertility are depicted from three crosses between representative varieties of japonica and two varietal groups of indica, which provide an extensive archive for investigating the genetic basis of reproductive isolation in rice. Ten newly detected single-locus QTLs for inter- and intra-subspecific fertility are identified. Three loci for embryo-sac fertility are detected in both Nip × ZS97 and Nip × MH63 crosses, whereas QTLs for pollen fertility are not in common between the two crosses thus leading to fertility variation. Five loci responsible for fertility and segregation distortion are observed in the ZS97 × MH63 cross. The importance of two-locus interactions on fertility are quantified in the whole genome, which identify that three types of interaction contribute to fertility reduction in the hybrid. These results construct the genetic architecture with respect to various forms of reproductive barriers in rice, which have significant implications in utilization of inter-subspecific heterosis along with improvement in the fertility of indica-indica hybrids at single- and multi-locus level.
Collapse
Affiliation(s)
- Guangwei Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoting Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaming Mi
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dahan Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyan Dong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|